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SECTION I

INTRODUCTION

The SCEPTRE Circuit Analysis Program has been developed and
improved over a period of years on a number of contracts led by the
Alr Force Weapons Laboratory. The users' information for the 1973
version of this program is contained in two volumes, of which this is

the second.

Volume I contains basic instructions for use of the program.
Volume II is intended to give a fuller understanding of the SCEPTRE
internal formulation so that the more sophisticated user may take full
advantage of the program's capabilities and flexibility. This volume
supercedes AFWL-TR-72-77 for use of SCEPTRE on S/360 equipment, and
retains the information from AFWL-TR-72-77 pertinent to 7090/94 equip-

ment.

The 1973 version of SCEPTRE, implemented for S/360 use, contains
six additions not available on previous versions. There are four new
DC options, an AC analysis capability, and a convolution capability,
This volume covers the mathematical formulations for all of the previous
SCEPTRE features, plus five of the six new ones. The convolution feature

is covered entirely in Volume I,
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SECTION II
FORMULATION AND THEORY

2.1 INTRODUCTION

Any automatic transient analysis program is designed to relieve the user
of the necessity of writing and programming the differential and algebraic
equations that describe networks. PREDICT and other programs already perform
this basic task, but the degree of flexibility permitted the user varies widely
among programs. SCEPTRE, written as a successor to PREDICT, incorporates

many improvements.

This suction presents the forimulation and theory that serve as the basis
for SCEPTRE. Therefore, the discussion is mathematically oriented. Those
features of SCEPTRE that are not mathematical are not included here. For
example, the extremely useful features of Rerun and Model Storage are not de-

scribed.

2.2 GENERAL SOLUTION

SCEPTRE consists of three separate formulations that combine to produce
the general solutions of a given network. One is referred to as the DC pro-
gram. It has five options, discussed in subsection 2,4, Each will determine
the network voltages that prevail before any time-varying forcing function is
applied. This program does not treat time as an independent variable; instead
it holds time constant, and iterates on selected voltages. The output of a
DC program may be obtained independently, or it may be automatically used as
the starting point for the transient or AC program. Thus, the output of the
DC program effectively supplies the initial conditions for the system of dif-
ferential equations that are solved by the transient or AC program.

The sccond program is called the transient program. This program uses
time as an independent variable and solves systems of differential equations
as functions of time. The output of this program represents the transient
response of a given network. As implied above, the transient program may be
used in conjunction with the DC program, or it may be used by itself if the
initial conditions of the network are known.

The third program is called the AC program. This program uses frequency
as an independent variable and solves algebraic equations as a function of
frequency. The output of this program represents the frequency response of a
glven network. The AC program may also be used in conjunction with the DC
program or by itself. It is discussed in Section 2.5

The general solution procedure described here concerns the definition of
the terms, matrices and procedures that are common to all programs. Other
parts of this volume will provide the detailed explanations and derivations.



The first step in either program is the construction of a tree * (Ref. 1) ac-
cording to prescribed rules, which differ for the three programs. This permits
formation of a B matrix that effectively expresses link voltages in terms

of tree brauch voltages and tree branch currents in terms of link currents.
Figure 1 shows a composite B matrix that contains all possible element classi-
fications and submatrices. This matrix is derived in appendix B. The element
classifications are given in table I.

Tree Branches

E Class Class i Class ; Class | Class
_____ I 4 5 6 7 Y |
Class 1 B]4 B]5 Blé 317 BIY
C_l.oss—2- 32 4 82 5 B26 327 B2Y
Class 3 834 335 B36 337 B3Y
Class 8 BB4 885 886 887 BBY
0 N I S
-&Ta:s-;)— B,) 4 805 Bo 4 B 07 BOY
_C—Ia:s—)(- Bx 4 Bx 5 BX 5 BX 7 BXY

Figure 1. Composite B Matrix in SCEPTRE

* A tree 1s defined as any connected network subgraph that contains all nodes
of the network but no complete loops. All circuit elemeunts that are members
of the tree are termed tree branches. All circuit elements excluded from the
tree are termed links. A '"C" tree is defined in this report as one in which
tree members are chosen in the preference order E, C, R and L. All current
sources (J) must be excluded from the "C" tree. Therefore, these sources
are links. A cut set is defined as that group of elements that would isolate
two groups of nodes when removed from a network.
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TABLE I

ELEMENT CLASSIFICATIONS IN SCEPTRE

CLASS

ELEMENT

TR

LTIy T
~3

Capacitor links

Resistor links

Inductor links

Capacitor tree branches

Resistor :ree branches

Inductor tree branches

Voltage sources

Independent current sources

Primary current sources (dependent on voltage across terminals).
This class will appear only in the derivation of the initial conditions
and AC programs.

Secondary current sources (dependent on other current sources). This
class will appear only in the derivation of the initial conditions
program.

Voltage sources that are dependent on resistor voltages. This class
will appear only in the derivation of the transient and AC programs.

Current sources that are dependent on resistor currents. This class
will appear only in the derivation of the transient and AC programs.

Voltage sources that are generated in adjoint calculations due to
the presence of secondary current sources in the network.
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The following matrices and vectors may also be defined as a result of

Ry2

Cys

Rss

Gs;s

‘n

8y

Cag

S44

Li3

Y

Let

S99

Il’

12,

13.

14,

S’

PTI

the element classification in table I:

a diagonal matrix composed only of resistor links

-1
Ry2

a diagonal matrix composed -nly of resistor tree branches

-1
Rss

a diagonal matrix composed only of capacitor links

-1
‘11

a diagonal matrix composed only of capacitor tree branches

-1
€44

A matrix composed only of inductor links and the mutual
inductance between inductor links

a matrix composed only of the mutual inductance between
inductor links and inductor branches

a matrix composed only of inductor tree branches and the
mutual inductance between inductor tree branches

a diagonal matrix composed only of the voltage derivatives
of primary current sources

- vectors composed only of the currents or voltages assu-
clated with capacitor links

- vectors composed only of the currents or voltages csso-
clated with resistor links

- vectors composed only of the currents or voltages asso-
ciated with inductor links

- vectors composed only of the currents or voltages asso-
clated with capacitor tree branches

- vectors composed only of the currents or voltages asso-
clated with resistor tree branches
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16' V6 - Vectors composed only of the currents or voltages asso-
ciated with inductor tree branches

JB’ V8 - vectors composed only of the currents or voltages asso-
clated with independent current sources

J9, V9 - vectors composed only of the currents or voltages asso-
cilated with primary current sources

Jo, Vo - vectors composed only of the currents or voltages asso-
clated with secondary current sources

E7 - A vector composed only of voltage sources

2.3 TRANSIENT SOLUTION

2.3.1 MATRIX OPERATIONS

The state variables of any system can be defined as the minimum set of
quantities that will suffice to determine all other quantities in the system
at any instant. It can be shown that the knowledge of the set of all capaci-
tor tree branch voltage (V,) and inductor tree link currents (I_,) is sufficient
to determine all other element currents and voltages and, furthermore, that
this selection of state variables will allow network formulation in terms of
first-order differential equations. The starting point of the derivation than
is that quantities V, and I3 are known and the 1list of unknowns 1s made up of
V), Vo, Vo, Ve, Ve, 4, 1,,%1,, I, I, I, and Vg, In addition, the deriva-
t}ves of 2he state variab}es, v gnd ? 5 zust be obtained in preparation for
the numerical integration routine whica produces the updated state variables
that are valid at the next time increment.

Some of the equations needed to solve the unknown quantities may be ob-
tained from the transient solution B matrix (figure 2). The B matrix itself
arises from a '"C" tree, which is formed by an E, C, R, L preference order.
Note that the B matrix differs fgom the composite matrix of figure 1 in that
gome submatrices are zero valued and that no distinction is made between

types of sources.

*
For example, B,. must be zero since the "C" tree preference prohibits the
possibility of a Capacitor link closing a loop that contains a resistor tree

branch.
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Tree Branches

i i
Class ! Class | Cluss | Class |
|

4 5 16 7

Closs 1 B 0 0 B
F Links o 14 17
Class 2 824 825 0 Byy

4
| Class 3
s Bay | B35 | B3s | Baz

Class 8
o Boy | Bas | BPss | Pz

Figure 2. Transient-Solution B Matrix in SCEPTRE

ORI 15 R -

s of tree branch voltages

Since link voltages can be written in term
ions may be written in matrix

‘= directly from the B matrix, the following equat

form:
E v, = BV~ BBy M
\ Vv, = =BV, - BysVs T Bar¥y @)
; Vo = By, - BasVs ~ Bagle ” B3sEs 3
} Vg = BV, ~ Bas's " Pse'e " BgsEs )
Since tree branch currents can be written in terms of 1link currents, there
é arises:
L I, = By I * By L2t BsaT Iy ® BsaT Jg G
5 = Bys Ip * Bys Iyt Bgs Jg (6)
Ig = Byg I3+ Bgs Jg M
I, = 317T I & BZ7T I, + 337T I, + 387T Ty (8)

where the superscript T is uséd to indicate the transpose of a matrix.
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Two additional equations may be obtained from differentiating Equations (1)
and (7) ylelding:

Vi ¢ BV -Bph E 9)

16 = B36 13 + 886 J8 (10)

Note thac*source derivations E, and J, have been introduced in the last two
equations . These equations, Zogether with a few fundamental relations, will
be used to derive all of the network currents and voltages in terms of known

quantities.

2.3.1.1 Solution of Resistive Quantities

The resistive quantities of interest are I,, I, V2, and VS’ The
fundamental voltage current relations for resistors permit:

V, = R, I (11)

Vo = R.I (12)

I2 may be explicitly solved for by manipulation of equations (2), (6), (11)

and (12) to get

-1 T T
T, = LBV - By - BagRss [BysT 13+ gt 5] } i

where

T
Y Ry2 ¥ BysRssBys (14)

The significance of equation (13) is that the vector of resistor link currents
has been solved in terms of all known quantities, since the right side of the
equation 1is composed entirely of state variables V, and I,, known sources E
and Jg and known incidence submatrices. Once I2 is known, the vectors Is,

V2’ and V5 can be determined from Equations (6), (11), and (12), respectively.

*
See subsection 2.3.3 for a discussion on source derivatives.
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An alternate approach may sometimes be preferable. Equations (2), (6),
(11), and (12) may also be manipulated to obtain

-1
V5 = MG

v, + B,,E,] + B T I.+ B T J

T
~Bys Gzzlsza 4 ¥ ByiEy 35 I3 %+ Bgs Jg } (15)

where

T
Mg Cs5 + Bys GyyBys (16)

Equation (15) gives the vector of resistor tree branch voltages in terms of
quantities that are all known. Then, V2, 12 and I5 can be solved by Equa-
tion (2), yielding

I, = G,.V (17)

and

1 (18)

5 = Gss's
respectively. The two approaches differ in the size of the matrix to be in-
verted. The first approach requires the inversion of a matrix (M_) containing
the number of rows and columns equal to the number of class-2 elements in CLhe
network. The second approach requires the inversion of a matrix (M.) con-
taining the number of rows and columns equal to the number of class-5 elements
in the network. Networks containing resistors that are all constant require
only one matrix inversion. There is no practical difference between the two
approaches. If, however, the network contains at least one variable resistor,
a matrix must be inverted at each Solution time increment. Hundreds, or even
thousanis, of matrix inversions are necessary and the size of the matrix be-
comes ol significant importance. SCEPTRE will automatically determine which
of the two approaches should be taken for each individual network.

2.3.1.2 Solution of Capacitor Quantities

The capacitor quantities that must be solved at each time step are
I., I,, V., and V,. Vector V, itself will have been updated by the integration
routine and, hence, will be known. The fundamental relationships for capaci-
tnr+ permit

V, = s, I (19)
Q = S .1 (20)

Equations (5), (9), (19), and (2) may be combined to obtain
-1 T T T '
L = ¥ %'314544 [Bza Iy+ B3 I3% By Je‘ S by I (21)
where

T
Mo = Sy1 % BisSueBis (22)

e A b
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At this point, vector I, has been isolated in terms of all known quantities.
There remains to obtain 14. Vl, and Vb from Equations (5), (1), and (19),
respectively.

2.3.1.3 Solution of Inductive Quantities

The inductive quantities that must be solved at each time step are

I, V., V6, and I_. Vector I, will have been updated at the start of each
tgﬁe gtep and will be known. “The fundamental relations for inductors permit

Vi = Lagly + Lyl (23)

Vo = Lesls ¥ Lgels @)

Equations (3), (10), (23), and (24) may be combined to obtain

. -1 _ _ T TI'
I; = M ") B3V, ~ BygVs = BysEy = | ByglogBge + LagBgg Js} (25)
where
= L..+L.B. +B, L.+B, LB T (26)
M 33 ¥ L3gB3g ¥ Byglgs * BiglegB3e
Now I3 is written in terms of known quantities. Following this, V3, V6 and

16 may be ontained from Equations (10) and (23), (10)and (24), and (7), re-

spectively.

2.3.1.4 Solution of Voltage Source Currents and Current Source Voltages

A complete list of possible outputs of a network would include the
current through voltage sources and the voltage across current sources.
These can be obtained directly from Equations (8) and (4), respectively,
since the right sides of these equations are known at this stage of the
computational sequence. These steps complete the formal derivation of all
network currents and voltages.

2.3.2 SCANNING PROCEDURE

2.3.2.1 1deal Operation (Submatrices B = ()

14° Bps» and Byg

The series of matrix operations described in subsection 2.3.1 could
very well be programmed as they are to produce the solution of the general

transient analysis problem. All of the matrix multiplication, addition, etc.

could be performed at each time step to generate the necessary currents and
voltages. However, a very significant improvement in computer running time
could be achieved by a more efficient utilization of the information con-
tained in the B matrix.
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Various network voltages and currents could be regd or "scanned'" directly
from the rows and columns of the B matrix respectively . This can be put
more precisely by

V. = =-BY (27)

and

I = BYI (28)

where Itg, Iy, VTB and V| represent the vectors of tree branch currents, link
currents, tree branch voltages, and link voltages, respectively. If the
vectors and the B matrix are partitioned according to the form of figure 2,
Equations (27) and (28) lead to the first six equations of subsection 2.3.1
Quantities V, and I, are explicitly written in terms of known quantities of
Equations (2} and (g) if submatrix B,. = 0. Once the resistive quantities
are determined, equation (5) present§ I, in terms of known quantities if sub-
matrix B n 0, In the same manner, equation (3) presents V, in terms of
known (uantities if submatrix Byp = 0. Clearly, then, the condition "B,,,
B,., B,, = 0" permits solution o? v,, IS’ 14’ V., I,, and V1 directly by
scanning and without any matrix manipulation. auan?ities T Vi) T V2O V4
and I3 con then be determined from the operations given or implied in tge

non zéro portions of Equations (11), (12), (21), (24), (19), and (25), re-
spectively. Once all of these quantities are explicitly obtained in terms of
known quantities, the equations are stored, compiled, and executed at each
time increment without recourse to repeated matrix manipulation.

2.3.2.2 Operation When B $# 0

25

In most large networks, submatrix B,. does not equal zero. When this
happens, quantities V, and I. cannot be '"scanned" out and either Equation (13)
or (15) must be solvea. Botg of these equations require the inversion of a
matrix; thus, some matrix manipulation must be done. To illustrate the pro-
ceduce, assume that some hypothetical network has given rise to the B matrix
shown in figure 3. The network is fairly typical in that B,,, B,, = 0, but
B,. ¥ 0. The nature of submatrix B (outlined in figure 3) 1is Buch that
resistors R3 and RD contribute no rows or columns, and the scanning process
immediately yields

VR3 = E1 - ch and IRD = ILl, from which follow

Ipg = (B} - Vgp)/Ryand Vo = RL,

These quantities will be updated at each time step without matrix manipulation.
The rest cf the resistive quantities in the network may be solved by the

* AFWL-TR-65-101, Volume I
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matrix manipulation implied in Equations (13) and (14). Once the resistive
quantities are determined, the remaining network quantities may be scanned
out and stored. The only repeated matrix manipulation required will be for
the three resistor link currents (IR ~ IR . IR ) that cannot be scanned be-

cause st ¥ 0. 1 2 4
|
Class 4 Class 5 ! Class 7
| |
Cl C2 RA RB RC RD = El
R] ] 0 | 0 0 0 -1
R2 0 1 0 1 1 0 0
Class 2
R 0 ] 0 0 0 0 -1
3
L R4 0 0 1 0 0 0 0
L 0 0 0 0 0 1 0
Class 3
L2 0 0 1 0 0 0 0

Figure 3. B Matrix from Hypothetical Network

2,3.3 SEMI-AUTOMATIC SOURCE DERIVATIVES

The need for source time derivatives in transient analyses is established
in Equations (9) and (10) where E, and J, are required. In situations where
non-zero source time derivatives a1 needed, the user must supply them. These

situations are subsequently described.

2.3.3.1 Voltage Source Is Variable and Bl7 ¥ 0

If B, ¥ 0 and the voltage source is constant, SCEPTRE will auto-
matically suppIy a zero derivative. In the case where a non-zero derivative
is required and the user fails to supply it, the run will be terminated with
a diagnostic message. The situation is best recognized by the presence of
any circuit loop composed solely of capacitors and at least one variable

voltage source.

-12 -




2.3.3.2 Current Source Is Variable and 886 ¥ 0

If B,, ¥ 0 and the current source is constant, SCEPTRE will auto-
matically supgiy a zero derivative. In the case where a non-zero derivative
is required and the user fails to supply it, the run will be terminated with
a diagnostic message. The situation is best recognized by the presence of
any circuit cut set composed solely of .nductors and at least one variable
current source.

2.3.4 LINEARLY DEPENDENT SOURCES

The ability of SCEPTRE to correctly process linearly dependent sources
permits the user to define current and voltage sources that are linear func-
tions of resistor currents and voltages. This feature is expected to be most
useful for, but not limited to, applications involving families of small-
signal transistor equivalent circuits such as shown 1in figure 4.

These linearly dependent sources require special treatment because their
magnitudes are direct functions of quantities that are not state variables.
Unless these sources are specifically processed, they will be updated at the
nth time step according to the values of their independent variables at the
(n - 1) ctime step (as they would be in PREDICT, for example). This results
in a "computational delay", which can lead to large errors throughout the
entire network.

Linearly dependent sources are provided for in the general B matrix
by the Y and X classification. When these sources exist, SCEPTRE will set
up the B matrix as shown in figure 5. Under these circumstances, Equations
(2) and (6) can be extended to:

V2 = -B24V4 = BZSVS = B27E7 = BZyEY (29)

T T T T
15 325 I, + 335 I3 + 385 g + Bxs JX (30)

Since any resistor-voltage-dependent voltage source must depend on a resistor
tree branch voltage or a resistor link voltage, there arises

EY = k1 V2 + k2 V5 (31)

where:

@ k, 18 a matrix of constants containing the number of rows equal
to the number of class-Y voltage sources and the number of columns
equal to the number of non-scannable class-2 elements.

® k, i8 a matrix of constants containing the number of rows equal

to the number of class-Y voltage sources and the number of columns
equal to the number of non-scannable class-5 elements.

=18 f=
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: Pigure 4. Low-Frequency h-Parameter Equivalent Circuit
e
i i
1 Class : Class Class Class Class
L | 4 | 5 6 7 y
| B
Class 1 14 0 0 817 Bly
L Class 2 32 4 325 0 327 BZy
B
; Class 3 24 835 836 837 B3y
i .
; Class 8 884 885 886 887 BBy
1 Class x 8x4 Bx5 Bxé Bx7 Bxy

5‘ FPigure 5. B Matrix with Linearly Dependent Sources
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e EY i8 a vector composed of class-Y voltage sources.

Also, since any resistor-current-dependent current source must depend on a
resistor tree branch current or a resistor link current, there arises

JX = k3 12 + k4 15 (32)

where

e k, 18 a matrix of constants containing the number of rows equal
to the number of class-X ctrrent sources and the number of
columns equal to the number of non-scannable class-2 elements

k, is a matrix of constants containing the number of rows equal
to the number of class-X current sourc.s and the number of columns
equal to the number of non-scannable class-5 elements

® JX is a vector composed of class-X current sources

If Equations (31) and (32), together with V2 = RZZI2 and 15 = GSSVS are

substituted into Equations (29) and (30)

Ryaly * BysVs + By [klezlz + k2"5] L AP YL (33)

T T T T
Os5Vs = Bas I = Bys |k312 E kacssvsl = Byg Iyt By Jg  (34)

The last two equations may be consolidated as

(Ryy *+ ByykRyp) (Byg + By ky) I, “BagVy - Byy

T T T T T
(-Bys = Bys k3) (Ggg - Bs Kk,Go)] | Vs Bys I3+ Bgs Jg

If the large matrix on the left side is called MRG, then
I “B2uVs = Byrfy

T T
Vs Bys I3 *Bgs Jg

and the resistive quantities 12 and V. can be determined without computational

delay. Note that since all four "k" matrices are constrained to be comstant,

- 15 -
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the linearly dependent source feature itself will not require any more than
one inversion of MRG. If any variable resistors are present in a network,
MRG must, of course, be inverted at each time step. In addition, the extra
row and column that was added to the B matrix of figure 2 by the linearly
dependent sources will add terms to the equations used in the solution of
capacitive, inductive and some source quantities. Specifically, Equations
(5), (3), (4) and (8) become

T T T T T

n 1
I, By, I;*+By, I,+By I,+Bg Jo+B °JX ")
= o - - - - ]
Vs B34V4 = Bys Vg = Byg Vg = Byg E; - By EY (3%
- s . o - - 1
Vg BgsVs ~ Bgs Vs ~ Bgg Vg = Bgy E; - By, EY Gy
. T T T T T ,
17 517 11 + 327 I2 + 337 13 + Bs7 J8 + Bx7 JX (8"
and the new relations
VX = -Bx4V4 - B Vo - B .E, - BxyEY (35)
T T T T
IY +32y I, + B3y I, + B8y Jg + Bxy JX (36)
now exist.

A restriction must be placed on these sources based on the content of
section 2.5. The B matrix of figure 5 transforms Equations (9) and (10) into:

— . ?

1 14 V4 ~ Py By - By EY 9")
Y . o '

16 B36 I3 + B86 J8+ Bx6 JX (10")

Now, additional time derivatives EY and JX are required whenever B1y or
B ¥ 0.
x6

Differentiation of Equations (31) and (32) would involve quantities V2,
VS’ I,, and I_. The formulation contains no provisions for these quantitiés,
and tﬁere is fo way the user could know them to supply them as input data.
SCEPTRE will automatically check for the existence of non-zero B, or B . and
terminate the run with a diagnostic message when they occur. Theysituaggon
can be recognized by the presence of any circuit loop composed solely of
capacitors and at least one linearly dependent voltage source, or the presence

- 16 -
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of any circuit cut set composed solely of inductors and at least one linearly
dependent current source.

2.3.5 INTEGRATION ROUTINES

Four integration routines are optionally available for use in SCEPTRE.
Two of these, RUK and TRAP, were available in PREDICT and have been only
slightly modified. The third routine, called XPO, was developed at the IBM
Scientific Center in Palo Alto, California, by Dr. R. Warten and Mr. M. Fowler
and adapted for use in SCEPTRE. Studies to date indicate that XPO is usually,
although not always, faster than the other methods. For that reason, this
routine will always be used unless the user explicitly requests otherwise
in the RUN CONTROL section of any run. The fourth integration routine,
IMPLICIT, is discussed in subsection 2.3.5.5. This routine has advantages
when the spread between the largest and smallest time constants in a network

to be analyzed is very large.

2.3.5.1 RUK Formulas and Variable Step Size Control

The well-known Runge-Kutta fourth-order-accuracy formulas (Ref. 2)
for the numerical solution of the differential cquation

)." £ (e, ¥)

are given by

y (t +h) = y(t)+1/6lk1+2k2+2k3+k4 (37)
where

ks =t b £ t,y(c)]

1
h L
k, h £ t+2,y\t)+2k1J
h

k, = hfit+

1
. 5, y<c>+2k2|

ka = hfkt+h, y(t)+k3]

Variable step size control (Ref. 3) 1s achieved by computing

ke = hflt+h, y(t+h)]

5
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and

E = kl - 2k3 - 2k4 + 3k5 (38)

The above formulas easily generalize to systems of differential equations, in

which case y and E become 3
i
1
3

y () = [y () ey v, (©)]
E = (el, oL en)

Now let
Ups Ups 14, 1,20

Set

Uk = u1 + u, \ Y (t + h)\

L = L+L |y

e B Do SRR b Ak al

s

(t + h) |

B

If | e | >1.5 U for some k, the integration step h is halved, the in
dependent variable is restored from t + h to t, and the values of y and y are
restored to the values at time t.

If |e | >0.75 U, for some k, and | e, |$1.5 U for all k, the current
integration step is accepted, but the step size is halved for succeeding steps.

S R

LR S2

If L < | e, |s0.75 U, for all k, the step size is unaltered.

If | e |le for all k, and | e l« for at least one k, a doubling in-
dicator is activated. Actual doubling is delayed for seven time steps.
Halving always takes precedence over doubling; thus, anytime a halving signal
18 received, the step size is halved and doubling 1s delayed for at least
seven steps. Similarly, after successful doubling, another seven steps must i
elapse before the step size can be doubled again.

Recommended choices for u,, u,, 1., and 1, are as follows. If absolute
1’ "2° 71 2
error control is desired,

set
u = 0.0075 u, = 0
11 = 0.00005 12 = 0
- 18 -
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If relative error control 1is desired,
. set

ul = (0.005 u2 = (.005

11 = 0.00005 12 = 0.00005.

f If smaller step sizes are desired than the ones yielded by the above set-
1 tings, the 0.0075 and 0.00005 settings should be reduced by a factor of 32.
: This will yield half the previous step sizes.

|
2.3.5.2 Modified Trapezoidal Integration (TRAP) i

2.3.5.2.1 Method

Given the differential equation

() = £,y (), y @ =y

consider the following numerical integration scheme,

y, (E+3m = y(© +5 y(@® (39)

) 3 3 3

yp (t +'§ h) = f’ t + E-h, yp (t + E-h)]

- fle+dny w+ly (40) ]
h : : 3
y, (£ +h) = y<t:>+g|2y(r:>+yp c + 3 1] (41)
y (4 = £]e+n, y (c+n) (42)
, Step~-size control is achieved by computing
E = 2hly (t+2n) -y ] 43)
3 Yp 2 y

The magnitude of |E| inuicates any changes to be made in step size.

2.3.5.2.2 Truncation Error

Inasmuch as y = ft +y fy and the true solution Yp is approximated by
2

yp(E+h) = y () +hy () +5 ¥ (@,

- 19 -
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one obtains,

2
L h [}
yp (4 h) = y () +hy (6) +75 (£ +7 £) (44)
On the other hand
3h h 5 3h, ,hy
fle + 2,y(t)+2y(t)] f (t, y (t)+ 2ft+ 2fy (45)

whence Equation (41 ) becomes

. h 3 . 3h h ,
et 2y @+t oo B e tye

Subtracting Equation (41 ) from (44) ylelds
h h .

2 2) h2
Yo (t + h) - Y. (t+h) = Y fy =3V fy

which, in turn, yields the approximate local truncation error.

From Equations (40) and (45) one gets

g 3h 5 . 3h h .
yp (t+ 2)')’('1) = th +2yfy

whence
3 2 X

. . h™ .
) — G| e e (46)

2h | .
3 y (¢t +

One notes that if f = 0, then Equation (46) is a good representation
of the local truncation érror, neglecting higher order terms.

Experience indicates that, for systems of equations of the form Y =
A (Y) Y + B where A is plecewise constant, the method as well as step-size
control is adequate.
2.3.5.2.3 Stability

Consider the differential equation

y = -ay, y(0) = Yoo 8 > 0

The numerical integration scheme given by Equations (39) through (42)
yeilds

2 \n
y, (ah) = (1 - ah +—(-a—*61)—) y (0) 47)

- 20 -




This is easily established by induction. Thus, for numerical stability
2
it 1s necessary and sufficient that |1 - ah + ﬁg%l__|<1. This yields 0 <

ah < 6 as shown in figure 6.

Inasmuch as | ah |< 6 is necessary and sufficient for numerical stability,
we say that the modified trapezoidal method has a stability radius, r, equal
to 6. Moreover, from Equations (39) and (40) we see that the method requires
two derivative evaluations (passes) per integration step. Thus, the pass
number p associated with the method is 2.

The ratio r/p is a measure of a method's efficiency in the sense of minimum
number of integration steps per given time interval.

ah

Figure 6. Root Locus of TRAP Characteristic Equation

The higher the r/p, the fewer steps are required for a given a.

-21 -

SR

o

-



T

ST

The following list shows r, p and r/p

METHOD
Modified TRAP
Euler (Ref. 4)
Trapezoidal (Ref. 5)

NIDE (1PASS) (Ref. 6)

Runge-Kutta (Fourth-order)

NIDE (2PASS)

Hamming (Ref. 7)

2.3.5.2.4 Step-Size Control

irt

008

2.78

0.85

As mentioned previously, the quantity

2 3

g, = 2—“[9p (e +3b -9(:)]

is used for step-size control.

(1) The method is essentially the same as for RUK.

be real numbers = 0.

Compute U = u, + u2
L I Ezl]

If lEz

If LS| E

2

(2) Choice of Uy Uy,

1

1)

1

2°

Ve (t + h)l s L

for a few representative methods:

0.8
0.7
0.5
0.425

11 + 12 | o/ (t + h)|

> 0.75 U, the step size is reduced.
< L, the step size is increased.

< 0.75 U, the step size is not altered.

Recall that E, attempts to represent the local truncation error.

absolute error control set

u, = 0.01 5

1, = 0.0005 ,

- 22 -
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For relative error control set

u, = 0.001 ’ u, = 0.01
11 = 0.00005 R 12 = 0.0005

The above values work well in practice.
Reducing the above settings by a factor of 4 will reduce the step size
by a factor of 2.

2.3.5.3 Exponential Inte ration (XPO

2.3.5.3.1 Method

Given the differential equation

j @ = £y @l y @ =y

ed solution
e)‘h -1
y (¢+h) = y(t)+yA(c)h+ h hyp(t) (48)

this integration routine gives the comput

except for two cases that will be covered later. In equation (48)

. y(t)-y(t-ho)
YA (t) = ho

where t - ho is the last point computed;
Yo (t)y = y(t) -y, (€) (49)
M=oy () 3, () (50)

Since § (t) cannot be computed explicit}y by the program, we take a small

Euler integration step and approximate y (t) by Ve (t):

Ve (t+6) = y (&) +67 (t)

5’6 (t+8) = £ t+6,y6 (t +3%) VA

. j, (£ +8) - F (8 h
e (&) = 5 , 0<8& =7y

The first exception occurs if §6 (t) and 9p (t) have the same sign.

- 23 -




Then set
which results in Ejuations (49) and (50) becoming

Srp (¢) = ¥ (t) (52)
RN CEERCE

This provides a better approximation to the solution of the equation
Yy = X y+b without decreasing the overall effectiveness of the method.

The second exception occurs if \ , computed either by Equations (50) or (52)
is non-negative. Then the term

e Ah -1

Ah
in Equation (48) 1is replaced by 1 + Xg, thus changing Equation (48) to
y(t+h) = y(t)+yA(t)h+(1+——) hy (t) (53)

It can be shown with some effort that Equation (53) is equivalent to a trap-
ezofdal type integration method.

2.3.5.3.2 Truncation Error

- 1, when expanded in a Taylor series, becomes

Noting that

X 2

e -1 X , X 3
= 1+2+6+0(x)

Equation (48) can be written
h2
y(t+h) = y(t)+§vA(t)h+}"p (t)h+—2)\}"p (t) +

19,20
2 ®© 4 o mb (54)
2., 3

- Y@+ O h+ET @+ AT +0 &Y

- 24 -
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Referring to Equation (51), note that

Fo 0 = y@+3[y @ -y @ X +0ah (55)

Substituting Equation (55) into equation (54) yields

2 2
y(E+h) = y (O +F () h+F () -+ 8[5°(6) - F (0) g‘f,l(w )
56)

It is noted that the use of either exception to the principal Equation (48)
still yields the truncated expression, Equation (56).

3

Since 8§ < h. the method is second order exact; i.e., the error is of order
h”. This charé

cteristic will be used in Equation (57) in the next section.

2.3.5.3.3 Step~Size Control

Fort < t +(st + h, let y, (t +E) be the true solution to the
differential equationm, let y_ (t +€) be the computed solution, let &e (t +€)
be an expression obtained by differentiation of ¥ (t +€) with respect to

£51.e., ¥, (&) + (1 +)28) 9p (t), r20

y, (£ +8) =
© Iy (6 + eMEy (©) , A<0

and let ¥y (t + €) be obtained by substituting Ve (t +¢) into the differential
equation.

Ideally, step control should be based on the expression

h
E -/o [% (c +5) - 3, (:-g)] as

however, 9,1. (t +€) 1s not available except at E= 0.

Making use of the fact that
J(EHE) = EledE, yp (48 + [y, (£ 48) -y (e D) ||

= gy (£ +8) +0 (5D (57)

we obtain

- 25 -
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h h
| By -f [9 (6 +8) -3, (£ +8)] d§+/ [3, €+ -
| 0 0 |
| jo e+ %) ] 4

h

4
.f [9C (t +8) - 3, (c+§)] ag +0 (v
0

If Vs (t +€) - /5 (t +€) does not change sign for 0 <€ < h,

-

IEOI <h |9T c+n) -y, (+m) |sn|y (c+m) -5, (c+n |+| 0 |

! Thus, for small h,

E = h |9c (¢ +h) -3, (t+n)|

'{':?ﬂ'.:!:w

yields an estimate of the truncation error.
Let Ugs Uy 11, 12 be real numbers = 0. Compute
- {
U u1+u2|yc(t+h)| j

L o= L, +1 |y, (c+ h) |

If| E |> U, the step size is reduced. If | El < L, the step size is increased.

If L< E < U, the step size is not altered.

(RO At Rt e

For absolute error control, set
u, = 0.0075 : u, = 0

11 = 0.0002 ’ 12 = 0

For relative error control, set

_ u; = 0.005 . u, = 0.005
- 0.0001 -

E 1 : 1, = 0.0002

s
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2.3.5.4 General Absolute and Relative Error Criteria

All three explicit integration methods described in this section are
approximate methods that are used to integrate differential equations and,
thereby, update the state variables at each time step. Each of these methods
has an automatic control that allows step size to be increased and decreased
during the transient problem. The method of control used compares some func-
tion of the step size and the derivatives of the state variables to a quantity
that serves as a standard as, for example, in Equation (43). The standard
may be a constant or a variable function of the state variable. If the former
i8 used, it is termed an absolute error criterion; if the latter is used, it

is termed a relative error criterion.

Consider the situation in which two state variables are very different in
size. Let y. (t) = 1 and y, (t) = 100, For all practical purposes, it
is usually unnecessary to integrate the derivatives of these state variables
to tke same accuracy. If an absolute error criterion is used, this is just
what 1is done, and the step size may be unnecessarily inhibited. If, however,

a relative error criterion is used, effectively a larger error will be tol-
erated for the integration of y, (t) and a larger step size will be permitted.
In general, then, it would be bést for the user to use relative error control
when large values of state variables (capacitor voltages and inductor currents)

are expected.

Relative error control is programmed with all three explicit methods,
but the user may easily modify the relative controls or enter absolute con-
trols (subsection 2.2.10 of Volume I). If larger numbers are used for the u, or
u, entries, the solution process will be less likely to halve any particular
solution step size; smaller numbers would increase the likelihood of reduced
step sizes. If larger numbers are used for the 1, and 1, entries, the solu-
tion process is more likely to increase any particular solution step size;
smaller numbers make increased step sizes less likely. The user should
realize that any increase in solution speed that may result from adjustment
of these numbers must necessarily come at the expense of integration accuracy.

2.3.5.5 Implicit Method

The integration methods described in subsections 2.3.5.1, 2,3.5.2
and 2.3.5.3 are all explicit in form and can be used interchangeably within
the mathematical formulation of SCEPTRE without difficulty. If, however, any
implicit method is to be used, whether single step or multistep, an additional
computational step is necessary. This step is discussed in the following
paragraphs and in Appendix A .
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2.3.5.5.1 Basic Implicit Format
A generalized form of all iaplicit integration methods can be
written as

P P .
Y(N+1) = T a, Y(n-1) + h z b1 Y(n-1) (58)
i=0 im-1

where Y is the vector of system state variables, Y is the vector of state

variable derivatives, n is the step number, h is the step size and the a,
b; are suitably chosen constants, Multistep methods are introduced if

P>0. The simplest derivative form of Equation (58) is

Y(n+l) = Y(n) + h Y(n+l)

which 18 commonly referred to as the implicit or backward Euler technique.
If an mth order system of differential equations i1s to be solved by this
method, the following generalized matrix equation will result:

- oYy 8Y, 1 . k]
1l -hg 3—Y-I- (Yl,...Ym,t) . . . -hg 8Ym (Y1,...Ym,t) AYl
. e .o =
- hg -5?I (Yl,...Ym,t) . . . 1-hg 57 (Yl...Ym,t) AYm
L m o L o
-F1 (Yl,..Ym,t)
’ (59)

¥ (Y1,..Ym,t)

The iteration implied in Equation (59) is carried out to convergence at each

time step. The k superscripts here indicate the kth approximation to the

final value at convergence at each step, g 1s a constant that depends on the
order of integration, and F; is a function of the ith differential equation,

the step size and past values of the mth state variable. Sparse matrix
techniques will be applied to the operation implied by Equation (59) when

large problems are encountered,

- 28 -
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2,3,5.5.2 The Jacobian
The Y4 terms in Equation (59) are readily available from the basic
program formulation; but the general partial derivative term

oY,
~— ,1csi1i<m 1< j<sm
an

is not. To determine what is really needed, it is desirable to frame the
entire derivation of the symbolic Jacobian in terms of the general matrix

equation

Y = AY + BU + NU (60)

Since the desired quantities are the general

%,

avj

it can be seen from partial differentiation of Equation (60) that these are
contained in the matrix A. Hence the convenience of the general notation is

given in Equation (60).

What now follows is the construction in symbolic form of the general matrix A
in terms of the mathematical formulation that was derived in subsection 2.3.1.

Begin with
k T T T T
ChgVg = Iy = Byy 137 By, Iy + By, I3+ By, g (3)

and

v,=-B,, V, -B__V_-8B V6 - B37 E7 (4)

Substitute Equation (9) and (13) into equation (5) for

C. VvV, =B, ! E) +B. T

A
46 V4 = Byy  Cpp OBy VyBysEp) + By, Mp o (By,V,-BygE

247478278,
T T T T

“Bys Rgg Bys I3 = Byg Rog Bgg ~ Jg) + By I3+ By, Jg

(61)
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Use Equations (24), (10), (23) and (15) into Equation (4) for

* T . T [ ]
Lygly * Lyg (Byg T Iy + Bge T Jg) (62)
-1
M T T T
ByVy ~Bys ¢ {7Bas Gpp (ByyVy * ByyEy) + Byg - I+ By, Js'

T, ° T
= Byg (Lgy * Lgg Byg ) I3 = Byg Lgg Bgg  Jg = BygEy

Equation (61) can be manipulated to yield

T : T

T -1
2 MR (Bza Y

(Chuy * Byy  C12B14) V4 = By C1aByy By -

T T
T ByzBy * BasRssBas I3+ BysRssBys Ja)

T T 4
+B,, I;+Bg Jg (61)
Equation (62) yields

T /
[Lss *Llyg Bye * Byg Lgy * Byg Leg By ] 13 (62
T

-1 T T
B AR T (‘st C22B24V4 ~ Bas C2oPar®7 * By I3

T

T ol T *
Bgs Je) “B37E; ~ LigBgs  Jg = ByglesBss s

If only the coefficients of V,;, I3, V4 and I3 (the statg variables and the
state variable derivatives) are retained, Equations (61) and (62) become
considerably simplified and can be written in matrix notation as

- . ‘1 P b
V4 Mc o
- (63)

-1

- 30 -




r"\,‘\h" i Lo ke bt bt i Dt Sy
4

&

=

T -1 T GP -1 T
(-By, Mg By,) (By, " =By, Mg BysRoByo ) \
-1
1T T
(BygMy = Bys ~ GpgByy = Byy) (-BygMy  Bygh) I,
where M_=~ (C + B s C B
c ™ Cu * By Cpa By
T T

and M = Lyg + LygBae — + Baeleg + BayglegBag

The matrix appearing on the right side of Equation (63) is now in a form
corresponding to the first term on the right side of Equation (60). This
matrix is the symbolic form of the general A matrix that is needed to use
implicit integration (Ref. 8, 9) with the basic program formulation.

Another method is available to construct the Jacobian that is based on a
numerical rather than a symbolic approach. Each time that the Jacobian is
to be re-evaluated, m calls are made to SIMUL 8 to compute

4 .
Y F ¥y Yoo eon Yy ps Yy 0¥, Yoy oon ¥, ©)

Approximations to the desired partials are than obtained by

oY G
i Y - Y
i i (64)
5Yj BY,

2.4 DC SOLUTIONS

SCEPTRE offers five DC solution modes, Initial Conditions, Sensitivity,
Monte Carlo, Worst-Case and Optimization. Any one of the five may be used
alone, or as a souice of initial conditions for a Transient or AC runm.
Alternatively, the user may supply initial conditions data himself as entries
to a transient or AC run without the help of the DC options. One of the DC
options, called Initial Conditions, takes part in all DC solutions. It may
be called separately, and if any other DC option is called, that option uses
two or more passes of the Initial Conditioms cilculation to produce its
results. The Initial Conditions solution (and thus the other DC options
also) may use either the Newton-Raphson or implicit method. (See App. A, Vol. I)

2.4.1 INITIAL CONDITIONS SOLUTION BY NEWTON-RAPHSON METHOD

2.4,1.1 Technique Description

Many practical circuits require computer solution of the initial
conditions prevailing at the start of the transient (time = %) beiore the
transient solution can begin. These values can always be determined by a

8] =
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separate transient run in which all forcing functions are held at the values

for time = t,, However, an alternate procedure based on an iteration technique

using independent variables other than time was considered desirable. This
procedure presents the advantage of economy of machine time on all circuits
for which convergence occurs. This section will describe the formulation of
this portion of SCEPTRE, which is completely independent of the transient
formulation.

A similar derivation for the adjoint calculation is given in
Appendix F.

If an L tree 1s set up based on the preference order E, L. R, C a
general B matrix may be set up according to the procedure outlined in sub-

gsection 2.2. The zero-valued submatrices arise from the L tree and the
preference order*., The resulting B matrix is shown in Table II.

TABLE II

GENERAL B MATRIX FROM THE L TREE

| ¢ |

4 5 | 6 ] 7|
11 Bug | Bis | Big | Biq
SR Bys | Bag | Bay
3 | o0 0 Bys | Bgo
8 | Bga | Bgs | Bgs | Bar
9 | Bgg | Bgs | Bgg | Bgy
0 | Byg | Bgs | Bog | Boq

The following equations (among others) arise from this B matrix if
vectors V,, I., I, and submatrix B,, are assumed to be zero. These assump-
tions are based on the known final’values of V., I., and I, for the initial
condition problem and the absence of any current-source capacitor cut sets
(see the restrictions in subséction 2.4.1.4).

*
For example, the submatrix B, must always be zero since non-zero entries
in it could only arise when resistor links close loops containing capacitor

tree branches. The preference order prohibits this possibility.
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Vg + 395 Vg + Bg,E, = 0 (65)
v2 + 525 v5 + B, E7 =0 (66)

T T T T ¢
Ig = Byg I, -Bgg Jg-Bgg Jg-Byg Jp=0 (67)

To get all the variables of Equation (67) in terms of Vg, V2, VS’ and
effective sources, the following substitutions are made:

(]
[ ]

Ggg Vg + Qq

® 0 is a matrix containing the number of rows equal to the number

of secondary current sources and the number of columns equal to

the number of primary current sources

@ G__ and G,, are diagonal matrices containing only conductances

55 22
® Ggg is a dlagonal matrix containing only diode and transistor
junction conductances

® Q terms are described in Appendix II

’
Then, Equation (67) becomes

55 °5
(67)

- D=

T T T T
g5 Vg = Byg ~ Gyy V5 = Bgg ~ Jg - [395 & Bos a] [699 Vg Q9] g

i ettt
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Equations (65), (66), and (67) may be designated as F; (Vg9, Vy, Vs),
Fy (Vg, Vs, Vs) and Fy (Vg, V5, V5), respectively, 1If the basic Newton-
; Raphson method (see Appendix D ) is applied to Equations (65), (66), and

: (67):
aFl
El Fi (Vgy Vpy Vo) + —57= (Vg Vo Vo) Vg +
, 9
3F,
E' N, (Vgs Vys V) 2V, +
'.
:
] 3F
h. —avs (Vg, Vps V5) AV = 0
j
1
1 3F,
E FZ (V9, V2, VS) + ——avg- (V9, V2, VS) AV9 +
! 3F,
.
;
§ 3F,
_av2 (Vg V,0 Vo) AV =0
3F
Fy (Vg, V,, V) + —avg (Vgs V,, Vo) AVg +
3F 5
_"avz (Vgs Vyy V) AV, +
‘ 3F
] -—avs (Vgs V,y Vo) AV = 0
:
A or
?\ r — - -
F) (gs ¥y, Vs) g
F, (Vg» Vs Vs) +2Z AV, =0 (68)
Fy (Vg Vyy Vo) _\VSJ
- 34 -
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where the Jacobian is

YA

1f

3F,
3, (Vg» Vy» Vo)

BFZ

BVQ

Vo)

(Vg» Vys Vg

oF

(V%)

Ay, = V9 (n+1) - V9 (n)

9

AV, = V2 (n+1) - V2 (n)

2

AV, = Vs (n+1) - Vg (n)

5

(Vg, Vp, V

5)

v (Vg Vgu V)

v (vgn VZ' vs)

(69)

where n 1is used to designate the results of the nth iteration pass, then
Equation (68) becomes

B }
F) (Vgs V5, Vo)

Fy (Vgs Vys Vo)

leading directly to

o ——

V9 (n+1)

V5 (n+1)

L d

V2 (n+1) =

- 35 =

b

.

V9 (n+1) - V9 (n)
V2 (n+1) - V2 (n)

V5 (n+1) - VS (n)

—

1

-z F, (Vg, V,

3

—_

eI LS s hadca o

F, (Vg, V,, V
? V5)

F (Vg, V2, v

(70)

5)

S{J

(71)
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Equation (69) may be written more explicitly 1if the indicated differentiations
are performed on Equations (65), (66), and (67) to obtain:

. I 0 Bgs
|
i i Z 0 I 525
¥ T T T
L4 a -
l;95 * Bos :l S99 Bys  S33 Css
L= .J
i so that Equation (71) becomes
_ _ -~ -1 T -
] ] u
: V9 (n + 1) V9 (n) Fl (V9, V2, VS)
{, V2 (n + 1) = V2 (n)| - yA F2 (Vg, Vz, VS)
4
] V5 (n +1) VS (n) F3 (Vg, V2, VS)
,' - = - L _ i
3 (72)
2
p Equation (72) may be written in more convenient form as follows (see also
Appendix E):
] B 7] -1
Vg (n + 1) 1 0 Bys
V2 (n + 1) - 0 I B
‘ T T T 25
! Ve, L) = |Bgs  tBgs o Ggg By Gy Gy
§ - = —
? e = —
87 B
3 = By7 By
L T T
| E95 * Bos % Qg + Bgs  Jg )
4 Equation (72') signifies a computational sequence as follows:

Quantities Vg, V3, and Vg, the vectors of voltages across primary current
sources, resistor link, and resistor tree branches respectively, each have

some assumed value (usually zero) to begin the computation at n = 0, All
members of the right side of Equation (72') that may be voltage dependent

are updated. The left side of Equation (72') is then computed and the first
iteration (n = 1) is complete. The right side of Equation (72') is re-evaluated

e I N
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on the basis of the results of the first iteration and the left side is
again computed, thereby completing the second iteration (n = 2). This
process 1is repeated up to 100 times. After any iteration, if

V(n)| <0.001 | | + 0.0001 (73)

Ve + 1) - Vin + 1)

is satisfied for the set of all voltages in Equation (72), convergence is
considered to have occurred and the procedure is terminated. If after 100
iterations Equation (73 ) 1s not satisfied, a diagnostic message will be
printed indicating that convergence has not occurred. Experience to date
has shown that the Newton-Raphson procedure will converge for most circuits
in less than 30 iterations.

Convergence of the Newton-Raphson method can sometimes be prohibitively
delayed if for some reason a large forward bias (v>0.8V) is applied to any
diode or transistor junction that has been represented by the user in the
conventional closed form J = Is (@v-l). In this case, the slope of the

diode curve, given by GJ = %% = GIse
in Gy, and consequently in the Z matrix. The practical results of this can
be more easily appreciated by consideration of a one equation system as
represented by the second equation in Appendix D. A large derivative caused
by a highly forward-biased diode leads to a very small step (A x) in the
independent variable, Many steps will therefore be required to complete
convergence.

BV’ will contribute a very large term

If convergence has occurred, quantities V9, Vy, and Vs are now known.
There remains to compute only capacitor voltages and inductor currents since
capacitor currents and inductor voltages must be zero.

2.4.1.2 Computing Capacitor Voltages

From the B matrix in Table II, the capacitor link voltages can be
written in terms of the tree branch voltages as

V. =-B.,V -B._V_~-B._E (74)
In addition the principle of conservation of charge permits

T T
By Gy Yyt Cu Vy =By, S Yy O GV, O (3)

where V1 (0) and V4 (0) are initial voltages that may be specified by the user.
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Equations (74) and (75) lead to

T T

B Biy 11 Yy ¢

Ci1 Bis Vs = Byy €y Byy By 0

-1 T
Vg = g |’514

£ Y, (0)] (76)

T
where Mc - Bl4 C11 Bl& + C44

Once V, is determined, V

4 may be found from Equation (74).

1

(yyte that Class -4 elements can occur only if a capacitor cut set
exists, Otherwise Equation (76) will be identically zero and all capacitor
voltages can be determined from Equation (74).

The use of Equation (75) permits solution of a class of networks in

which the final value of capacitor voltage 1is dependent on an intial value.
Consider the circuit shown in figure 7, which contains a capacitor cut set.

Cl=9pf
-~ I Y
el 1\
_[ 2=1pf
IOVT :I:C IR

Figure 7. Capacitor Cut Set Circuit

If both capacitors are initially uncharged, the final values of the capacitor
voltages after the switch is closed must be VC1l = 1 volt, VC2 = 9 volts. If
however, capacitor Cl has an initial charge of 5 volts, the principle of
conservation of charge (reflected in equation (75)) requires the final result
to be VC1 = 5,5 volts, VC2 = 4,5 volts,

2.4.1.3 Computing Inductor Currents

Since V2 is known,

Ly=Ryp V) an

the inductor tree branch currents than can be written from the B matrix in
terms of link currents as

DL 2 By S B B ¢ T

I 26 IptB83 I3+ Bgg Jg+Bgo o Jg+ By "Iy (78)

A=
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In addition, the flux relations around an inductor loop permit

1

I (79)

Byg Les 6 * L33 I3 = B3 Les L6 0) * 133 I3 (0)

where I, (0) and I. (0) are initial currents that may be specified by the
user, gquations (98) and (79) lead to

-1

Iy = M [L33 I3 () * B36 Y66 T6 (0)
1 T

B36 Le6 [326 I * Bge

T
where ML B36 L66 836 + L33

T T
Jg + Boe - Jg * By J(J} (80)

Once I3 is determined, I may be found from Equation (78). Note that Class-3
' elements can occur only if an inductor loop exists.* Otherwise, Equation (80)
will be identically zero and all inductor currents can be determined from

equation (78).

The use of Equation (80) permits the solution of a class of networks
L in which the final values of inductor currents are dependent on the sizes of
= the respective inductances. Consider the circuit shown in figure 8, which
contains an inductor loop. If both inductors are initially relaxed, the
final values of the inductor currents after the switch is closed must be
ILl = 1 amp, IL2 = 9 amps.

k
= R=10
£ — —AAA
lov = L1 = 9h ; 12 = 1h

Figure 8. Inductor Loop Circuit

*
See paragraph (subsequent subsection 2.4.1.4) on network restrictions for
qualification of this.
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The task of computing the capacitor voltages and inductor currents
complete the initial-conditions problem. These quantities may then be
transferred to the transient program to serve as initial conditioms.

2,4,1.4 Restrictions

Since the initial-conditions program is formulated differently and
for a different purpose than is the transient program, certain restrictions
apply to the initial-conditions program that do not apply to the transient
program. These restrictions and the practical considerations that lead to
them are as follows:

1, No circuit containing a loop composed entirely of voltage
sources and inductors will be accommodated. This situation
would cause an infinite inductor current and is obviously of
no pract’cal importance. The presence of an E-L loop is
disclosed by the condition 337 ¥ 0.

2., No circuit containing a cut set composed entirely of current
sources and capacitors will be accommodated (see figure 9).
This situation wouid invalidate equation (65) and complicate
the solution process by requiring that V, be carried along in
the Newton-Raphson procedure., This cut set situation can
always be removed by arbitrarily connecting a large resistor
from node A to the ground. Note that the configuration of
figure 9 could be handled by the transient portion of SCEPTRE
if a Newton-Raphson solution was not desired. The presence of
a J - C cut set is disclosed by the condition that either

384’ 394, or BOA # 0.

® j

5O

il
&)

{

Figure 9. A Current-Source Capacitor Cut Set
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3. The choice of independent variables will be somewhat restricted.
No resistor or inductor current may be used as an independent
variable. Furthermore, a capacitor voltage may be used as an
independent variable only if it is in parallel with a resistor
or current source (Vo = Vg, V. = VJ). The objective here is to
avoid the need for any auxiliary computation between passes of
the iteration procedure.

4, Networks containing only capacitor cut sets can be accommodated
only if the members of the cut set are constant.

5. Networks containing only inductor loops can be accommodated
only if the members of the loop are constant,

2.4.2 MONTE CARLO

Monte Carlo calculations in SCEPTRE consist of multiple initial
conditions solutions for which certain element values have been chosen
using probability distributions specified by the user. These variable
elements, representing perhaps production deviations from nominal values,
cause corresponding variations in circuit output quantities. The Moute
Carlo function defines the selection of variable element values, controls
the corresponding iterative solutions, monitors output values, and tabulates
statistics for the output quantities,

The user can gpecify either the uniform or Gaussian distribution for
the variable elements. Since the solution is calculated for TIME = 0, it

is independent of capacitive and inductive elements. Thus, it is only useful

to vary resistors, independent current and voltage sources, and primary and
secondary current sources specified by defined parameters.

The value of a variable element is determined by its specified mean,
u» standard deviation, s, and a random number, 5, picked from the selected
probability distribution. The random number generator provides samples
from the selected type of distribution with zero mean and unit standard
deviation. Then the element value e.g. R, 1is calculated as

R=ud feo

If the random behavior of the element value cannot be directly defined

in terms of one of the two standard distributions, the mechanism of defined
parameters may be used. By specifying the means and standard deviations
for one or more defined parameters, and defining the element value using an

equation, expression or table in terms of these parameters, the user can obtain

a more complicated probabilistic behavior of the element value.
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As each new set of values is chosen for the random element value,
an initial conditions calculation is executed. For each output quantity,
the sum and sum of squares are accumulated, and the minimum and maximum
observed over all iterations are tabulated. The mean and standard deviation
for each output X are then computed as

Lx
i 71
Mx = 5 (81)
and
T _ 2 1/2
ST = (82)
X N-1

where My 1s the mean, Sy is the standard deviation, and the sums are taken
from 1 to N, where N is the number of Monte Carlo iterations.

2.4,3 SENSITIVITY
The Sensitivity option gives the user the partial derivative of a

network function with respect to a list of network independent variables.
This option gives the user the "un-normalized sensitivity", i.e.

- i
x/ aX &)

The normalized sensitivity, or the percentage change in a function with
respect to the percentage change in an independent variable, may be obtained,
if desired, by using a defined parameter. The normalized sensitivity is

/.

X

= o

oH
T (84)

To calculate sensitivity, an initial conditions run is made on the
original network, and appropriate network element currents and voltages are
saved. An adjoint network as described in Appendix ¥ is generated. (Ref. 10,
11.) For each network function whose sensitivity is requested, an initial con-
ditions run is made on the adjoint network with a proper source, and the element
currents and voltages in the adjoint run are saved. The proper product of the
original network values and the adjoint network values (see Appendix F) gives
the required sensitivity. Table III gives the sensitivity (superscript "a"
indicates adjoint values).
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TABLE III

SENSITIVITY COMPUTATIONS

INDEPENDENT VARIABLE

SENSITIVITY

Resistor (R)

Independent Voltage
Source (E7)

Independent Current
Source (J8)

Factor in Secondary

Current Source given by Defined
Parameter (P) where J0 = P*J9

(Current through the resistor in original
IC run) x (Current through the same
resistor in adjoint IC run), i.e.,

(IR) (IR®)

Negative current through the voltage
source in adjoint IC run i.e., IE?

Negative voltage across the current source

in adjoint IC run i.e., -VJg

(The primary current in original IC run)
x (Negative voltage across the secondary
source in adjoint IC rumn) i.e., (J9)

a
(-VJO)
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2,.4.4 WORST CASE

A Worst-Case calculation extrapolates linearly along the gradient vector
of an objective function, F, to reach a function minimum and maximum at one or
more independent variable bounds. The gradient vector VF is computed* for nominal 1
circuit conditions, and it is assumed that F depends linearly on the N independent i
variables. The gradient indicates the direction in which the function grows most
rapidly, and the assumed linearity allows extrapolation along this vector to reach ]

the minimum and maximum.

The maximum of F is then obtained by extrapolating the independent variable
values X as far as possible along the gradient vector:

X, - Y +ATF, A>0 (85)

Here, iH is the independent variable vector producing the high value of F, Y 1
is the vector of independent variables at the nominal point, and A 1is taken as
large as possible with Xy remaining within bounds.

Under the same assumption, the minimum of F is obtained by extrapolation
along the negative of the gradient vector:

X, =Y -uSF, w>0 (86)

EL is the vector of independent variables at the point producing the low
value of F, and u is chosen as large as possible, keeping the independent

E variables within bounds.

The independent variables are specified with lower and upper bounds

< =
P PLS X, 5Q, 1=1...N

*
See Appendix P for a discussion of the Adjoint method, used for computing
the gradient vector.
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If the i-t:--tl component of the gradient vector -ﬁ%%iis positive, then F

increases as Xy increases from Y; toward Q4. If, however, -g%i is negative,

F increases as X; decreases from Y{ toward Py.
The general equation of a line in N dimensional space may be written
as
o ! ) XN
. [ £ ] [ ]
Hy Hy “N

where (Xy, 1i=1...N) and (Yj, i=1...N) are two points on the line and U is
a unit vector in the direction of the line.

The equation can be restated

Xi-Y‘
- = constant (87)
My

When the J-g-l component takes on its lower bounding value, we have

XY P -Y
i i, A3 qaa1...n
Hy 7y

or,

!
X, = oy (Pj-Yj) Yo

The length of the line segment is given by

et o L By %
2 2 i3 wy = —A—
D = —Y = i 2

?, }; (X;=¥y) PP Lif u?

since wu1is a unit vector.

Thus,
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the distance along the gradient to the lower bounding surface of the jEE
independent variable.

Similarly,

-Y
S ) =
Q “

the distance to the corresponding upper boundary surface.

For the high limit calculation, a search is made through all Dpy for
gF OF
which 3%, is positive, and all DQi for which 3Xy is negative, until the
smallest number from this set is found. (Note that F is independent of any

Xy for which-%?%i = 0). This minimum value, DHIGH’ represents the largest

distance X can move in the direction of the gradient vector before it reaches
a boundary. Xyygy 1s the independent variable which established the allowable
displacement of X associated with DHIGH'

A similar search through all Dpy for which-fgg is negative, and all
9F
DQi for which 6Xi is positive, Efoducei another minimum, DLOW’ which 1s the
largest possible displacement of X from Y along the negative of the gradient
vector before striking a boundary. X;gy is the independent variable which
established the allowable displacement associated with DLOW'

XyIGH and XLow may or may not be the same variable. Figure 10
illustrates a two-dimensional case where the high limit is determined by
the upper bound of one variable (X7), and the low limit is determined by
the upper bound of another (Xj).

When the distance DHIG has been determined, Equation (87) can be used
to define all independent var?able values, Xyygy, at the high limit.

HIGH (88)

or

= 06 =
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%
\ HIGH LIMIT
\ DETERMINED BY Q,
N\ Xuien 'S %
\/
Q, A
->
vF\ =
oY
\ LOW LIMIT
\ DETERMINED BY Q,
XLow 15 X,
P \
2 \
>
P| Q' Xl

Figure 10. Two-Dimensional Example of Worst-Case Limits
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Note that this is exactly in the form of Equation 85, since 41s pro-
portional to VF and DHIGH >0.

In a similar way, we find the independent variables at the low limit
to be

X, =Y = Doy

as required by Equation (86).

(89)

When Xy and X; have been found, computations of objective function
value and gradient at each of the two points are carried out. Inspection
of the gradient vector at these points can give information on whether the
true extreme values occur within the bounded area or if they are external.

2.4.5 OPTIMIZATION

The Optimization option finds the local minimum of an objective function
with respect to a list of bounded independent variables, The local minimum is
the point in the independent variable space at which each component of the
gradient either is zero, or is negative (function decreasing) with its

corresponding independent variable at a bound,

The Optimization, or more accurately minimization, function is based
on the Davidon algorithm (Ref. 13). As in most such processes, the gradient is
computed for some set of values of the independent variables, Y, within all
boundaries, and the independent variable vector is displaced along the gradient.
At this new point, the gradient vector is again computed, and the cycle repeats
until the error (discussed below) 1is less than some criterion value.

The adjoint method of computing tne gradient obviates the use of a
direct search method with its inherent numerical problems. Furthermore,
since the adjoint procedure determines the gradient with only two IC
solutions regardless of the number of independent variables, it has a
speed advantage over direct search methods and other gradient methods.

This speed advantage is enhanced because the auxiliary IC solution (for

the adjoint network) is strictly linear and will generally converge quickly.
Thus the combination of rapid gradient calculation and efficient search for
the function minimum provide the SCEPTRE user with an extremely versatile

tool.
The Davidon method is a synthesis of two techniques: The Steepest

Descent Method and the Newton-Raphson method applied in the Initial Conditions
calculation (subsection 2.4.1). The Newton-Raphson method is based on the

truncated Taylor expansion
FX =F @ +h CF @ +1/20C () h

where h is the displacement vector (f -'§) and G is the Hessian matrix of
second partial derivatives of the objective function.

- 3 °r .
G 7 X 3%,
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Differentiation of this approximation to F(i) leads to the expression for the
gradient,

TFX) = VF(Y) + G(Y) h.
At the minimum value -)-(’, UF(X) = 0, so that the displacement h is given by
: B = - Tr).

F In the vicinity of the minimum, it is assumed that F is essentially a quadratic
' function of X, so that the point at which G is evaluated is not critical,.

The Steepest Descent step is determined completely by the gradient
vector, and thus has the advantage of simplicity. However, the process is
very inefficient, even for functions with quadratic dependence on the
3 independent variables, and is not generally recommended except for initiating

1 a minimization calculation.

Because the Davidon technique smoothly changes from the Steepest Descent
to the Newton-Raphson iteration, maintaining suitable conditions on h at all
times, it is a very effective procedure (Ref. 14).

¢ The Davidon proress (Ref. 15) starts with an initial approximation H, to G
o which is generally the unit matrix and is thus positive definite (since the
eigenvalues all have the value unity). The iterations produce an increasingly

i better approximation H to -1 without matrix inversion, while continuing to
enforce the condition of positive definiteness which will be required at the

minimum,

The iteration for the Davidon method is given by

S Teae U CONNBR CORMCOREEN Y

where

i —i(i) is the vector of independent variables;

h(i) is the step size, chosen by an auxiliary linear search process;

? H(i) is the approximation to G-1
and the superscript identifies the iteration at which the function is evaluated.

i The matrix H is updated as follows. Define the vectors
F - —
z = o (D (D) @)
E [ d

| an — - —

i 7=t o)
i
b | then
| gD @) @) p @)
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wherv the elements of matrices A(i) and B(i) are respectively given by
z
RO R
Ik Z-4

1 TeRT

4 -
The matrix A provides convergence of H to G L

positive definiteness of H at each step.

, while B maintains the

The implementation in SCEPTRE is based on the original formulation
A produced by the Argonne National Laboratory (Ref. 16). However, the original
5 code was inappropriate for constrained optimization and so the transformation
of independent variables suggested by Box (Ref. 14) was incorporated to pro-~
perly take care of the inequality constraints of the SCEPTRE independent
variables. This transformation may be stated in the following way: Suppose
the 1th {ndependent variable Xy 1s restricted so that

I
. P <X $Q
Then the transformation of variables

_ [Q+P Q,-P
e (1) - (3

)cos Y

i

is introduced. The corresponding derivative is given by

dX Q,-P
in = ( 12 1) sin Yi
i
Note that
Xi = Pi Yi = (0
X1 = Qi Yi =17
and dXi
- =0 at both extremes
in

The gradient components with respect to the new variables are given by

3F % ar

'571 d¥, 3,
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Thus, the effect of the transformation 1s to introduce zeros of the gradient
along the boundary, making these points acceptable to the algorithm. No such
zeros are introduced within the boundaries, and the algorithm will preferentially
converge to an internal minimum if one exists.

Another feature is the removal of a restriction present in the original
formulation, which required the minimum value of the objective function to be
positive. A floating reference value has been introduced which is smaller
than the estimate of the minimum at any stage of the iteration and which is
automatically updated as required. The user may specify a reference value
known to be smaller than the actual minimum. If he does so, the process
will probably converge more quickly, although a poor choice may increase the
number of iterations required.

N4

L)

\‘ aF
R

Figure 11, Change in AF Due to Change in Independent Variable

The iteration stops when the change in function value expected from
the next increment to the independent variable vector is less than the
specified tolerance.

{ Thus, in figure 11, 1f the anticipated change AF due to changing the
independent variable toli'(i+1), computed at point X(1) using the supposed
quadratic dependence of F cn Y: is less than the tolerance, the value X(i+l)
will be reported out as the location of the minimum, but no further isolation

will be done.
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2.5 AC SOLUTIONS

This section describes the AC analysis by SCEPTRE for the following
situations:

Case (1) Circuits Containing Independent Source Only

X = AX + GV, where VT = [E7 J8]

Case (2) Circuits Containing Linearly Dependent Sources

X = AX + GV + Hu, where uT = [EY JX]

Case (3) Circuits Requiring Time Derivatives of Independent Sources

X = AX + GV + QV

Case (4) Circuits Containing Linearly Dependent Sources and Requiring
Time Derivatives of Independent Sources

X =AX+ GV +QV + Hu

Circuits containing linearly dependent sources and requiring time derivatives
of both independent and dependent sources are excluded from both transient

and AC analysis.
2.5.1 INDEPENDENT SOURCES ONLY

2.5.1.1 State Variable Formulation

Consider the frequency-domain analysis of linear time-invariant
systems governed by the equations:

X = AX + GV (90)
Y=CX+DV (91)

where

A is an (N x N) matrix of real coefficients describing the network.

G is an (N x NS) matrix of real coefficients relating the
externally applied sources to the network.

N is the number of state variables.
NS is the number of externally applied sources.
NE is the total number of elements in the network.

NR is the number of outputs requested, and NR<2 * NE.

-5 -
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C is an (NR x N) matrix of real coefficients relating the
state variables to the outputs.

D is an (NR x NS) matrix of real coefficients relating the inputs
to the outputs.

X 18 an (N x 1) vector composed of state variables.
V 18 an (NS x 1) vector composed of externally applied sources.

Y is an (NR x 1) vector composed of requested outputs.

A method which will permit multiple inputs, i.e., multiple penetra-
tions, with frequency dependent magnitude and phase variation. For steady-
state AC analysis, this requirement on each individual driving function,
1<k <NS, may be indicated as follows:

V() = K (W) e g (92)

where

w 1s frequency in radianms.
@ is a complex quantity given by a = juw.
Kk(w) is, in general, a complex function of frequency.

Writing Equation (92) in vector notation we have

v = Ke Ot (93)

where the (NS x 1) column vector V is written as NS terms of the complex
frequency variable a with each term having an independent magnitude and

phase variation given by K.

The solution of Equation (90) is of the form

X = Xe QE (94)

Using Equations (93) and (94) we can rewrite equation (90)

d at, _ at at
Tt Xe ) =A(X e ) +G(Ke )

at Q t

Q
ax e % = ax ¢ % + Gke
(o] o]
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and
aX = AX + GK
o o
or
(aI - A)x° = GK
Solving for Xo we get
X, = (al - ) Lok (95)
! The system matrix A can be reduced by similarity transformations to a
diagonal matrix \. This is done by the EIGENP routine{(Ref. 17, 18)., The
process is 1
A = SA\S

where

\ is an (N x N) diagonal matrix composed of the complex system
eigenvalues, and

A e g

S 1s a complex (N x N) matrix whose columns are the system
eigenvectors. This matrix is referred to as the modal matrix.

The substitution of (96) into (95) leads to

1

X, = (sa st - s as7hyIgk

X, =s(al - .\)'ls'lcx
or
3 Sk =1
X, = SGwI-\)"'s GKW) (97)

i Equation (97) represents the AC solution to the state variable equation
- given in (90).

Equation (91) represents the non-state variable quantities. The
AC solutions for these voltages and currents are consistent with the
- transient equations given in subsection 2.3.1, with the understanding that
lﬁ their implementation requires complex arithmetic. The simpler equations
below are substituted for four quantities.

Il - ijllvl

II& = ij44V4
v3 = jw(L3616 + L3313)
T
Ve = Jw (LygIs + LoTo)
1 -54-
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2.5.1.2 A and G Matrix Calculations

SCEPTRE defines the state variables as the link inductor currents,

I3, and the capacitor branch voltages, V4. SCEPTRE also permits both
voltage sources, Ey, and current sources, Jg. This leads to the following

definition for X and V.

I E
X = 3 } N, V = 7 } NS
Y g

Rewriting and partioning Equation (90) in an alternate matrix form

produces:

as separate equations we have
)

4 :
. Iy = Ay I3+ AV, 46 Ep+GyJg

V, = A1 +A22V4+G21E7+622J8

s b

i,
The transient equations of subsection 2.3.1 (Ref. 17, 18) were used
in the derivation of the necessary submatrices.
]

f The submatrices Al y A 9! and A for the case involving lumped,
passive, time invariant 7, f ané efements are given by Equations (98),

E (99), (100), and (101).

T T T
= (-] * - * * *
A11 (-MLI) B35 55) [ 35 825 (MRI) * st R55 B35] (98)

A, = (MLI) *[334 35 55*325*(MR1)*B ] (99)

. T T iy T L
| Agy = (G, D* [314 * (MSI)*B, *S,, 1] * [‘324*(“1)*325 Rgs*Byg = 34]
(100)

T
| AZZ = (C44I) *[ *(HSI)*Bllo 44 I] *[324 * (MRI) *324] (101)

-55-




Qe ot

L

T TETY SR VI WM T, Iy ey e Y v -y

where

g -1
T T
MLL = [Lyy + Lyg*Byg + Byg*Lgq + Byo*Lgc*Bag ]
— T-l -1
- * *
LS i Byg*Rgs*Byg
r r ] -l
- * *
ML L B14™544B14

The submatrices Gy, Gy2s and Gy, Ggp, for the case involving
independent voltage and/or current sources, are given by Equations (102)
through (105).

Gyy = (MLI) * [337 Bys*Rgs* 25 *(MRI)* B27] (102)

G.. = (-MLI) * |B._*R__*(B. * (MRI)*B Bl (103)
12 35 R55* (Bgg - 25 25" R55*Bgs

Gyy = (G, D* [( 14t (MST)*B ¥s, - 1)*3 *(MRI)*BZ7] (104)

T T
Gyy = (CuyD) * [( ¥ MSTY*By %S, - D* (Bza(MRI)*st 55" Bgs - Bsai]

(105)
2.5.2 CIRCUIYS CONTAINING LINEARLY DEPENDENT SOURCES

2.5.2.1 Reduction to Canonical Form

SCEPTRE permits the user to define voltage and current sources
that are linear functions of resistor voltages and currents. These are
type EY and JX sources. Let u be a vector composed of these sources

given by, uT = [EY JX].
characterized by

Then a circuit containing th:se scurces can be

X = AX + GV + Hu (106)

where H is an (N X ND) matrix of real coefficients relating the dependent
sources to the state variables.

ND is the number of linearly dependent sources.
reduce Equation (106) to canonical form, namely

The problem is to

X = (AEXT)X + (GEXT)V
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where AEXT is an (NXN) matrix of real coefficients describing the extended
network, GEXT 1is an (N X NS) matrix of real coefficients relating the
external sources to the extended network. Equation (106) may be rewritten
in the following way: i
. 4
4
i 31 [A11 A12) | 53] [ 2] |Bs Hy B (B !
f . = + + (107) i
; Vol %21 222 |Va] |21 G228 Hyy Hpp| |
] By definition, |
] J
EY = kV, + k,V, (108) 3
and 1
JX = k312 + k415 (109) i
where kl' k2’ k3 and k4 are matrices relating each dependent source to i
the appropriate resistor voltage or current on which it depends. I
Since V2 = R2212 and 15 = GSSVS substitution into (108) and (109) {
yields:
EY k.R k I
= 1722 2 2 (110) i
JX -K3 klOGSS -VS ;
Substituting (110) into ('17) gives
1 121 22! |53 [ % S|l B2 | [H11 Poof|*aR22 ko I ,
\'}
o) LP2n 222) [Y] S0 G2 Ps] |21 Ma2fl¥3  KuCss| |Vs ]
(111) :

The vector [Y]T = [IZVS] can be expressed in terms of state variables

and independent sources by observing that Y~ is a subset of the non-state

variable outputs Y, where Y = CX + DV. That is
£
12 )
= Y7 = ¢cX+ D7V (112)
9 VS
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However, subsection 2.3.4 glves

I “ByVy  “Barfy
- MrG! . !
Vg BysIy  *Bgs g
where
Ry, + ByykiRyy)  (Byg + Byyky)
MRG =|, T T T
(-Bys = Bys k) (G55 = Bys k,Css)
therefore
0o  -B
4 3
¢ =mrcl | 24 (113)
BL. 0
35 ]
and
-B 0
p’ = MRG L 2 (114)
T
0 Bgs

Using (114), (113) and (112) we can write Equation (111) in terms
of state variables and independent sources

21 22773

Collecting terms we have

e L S e
.3 zom Eo e el e

k4G

55-

61 G325
+
Gyy Gy d LJg
L]0 P L] [By © By
MRG +
L v4_| 0 BT I
35
-58-
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B3] 1M1 A2 M M2 [*R2 ko L0 Bl || T8
- - T
UVad \LA21 A22d UMy Hppdlks  KyBss Bys O Y,
°n Cr2| M M| MR R I T B

+ + MRG T (115)
621 C22) LHyy Hppdlky  KyGs 0 Bgs 1/L%

where Equation (115 represents a reduction of Equation (106) to canonical
form as required with

Ay Ap Hyp Hpaf kR Ky 0 0 -By,
AEXT = i MRG .
Ay Ag Hyp Hypd kg kg Gss Bys O
and
‘11 %12 i1 Mo [l % o
GEXT = g MRG 1
Gy1 Ca2 Hyp Hopd Iy kG 0 Bgs

2.5.2.2 H Matrix Calculation

Equation (115) is complete except for a description of the H matrix
which is necessary for computational purposes.

It is easily shown that the H matrix is quite similar in structure
to the G matrix by observing the equivalence in the following equation

E

7

61 %2l E Hyp Hyof [BY] |61 612 Hyp Hyo| |98
+ = EY

G G J H H JX G G22 H21 H22 JX

21 22 8 21 22 21

This indicates that the G and H submatrices differ only by post-
multiplications by terms which relate the circuit connectivity to the
appropriate sources.
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Thus

() By; + (g)) By

and
(g,) B + (g,) B : (g,) B T
) O ' 2 sy | 84T x5
- |
- + (g B, | (8) By' +(g) B,
3 2y , 557 °xs 6 X4
where
gl = =MLI
- T
g8, = MLI (Bj; Rcc) (B, MRI)
- T -
g, = C,,I(B, MSI B S, I)BMTMRI
_ L ) Gp
8, = MLI(Byo Rgo) [I - (Byg MRI) (Byg Re()]
= ¢, I(B,, 'MSIB., S, -1) (B.,) MRI B.. R
gs 4414 14 44 24 25 755
g. = -C,,I(B,,  MSI B,, S, -1
6 44" "14 14 44

2.5.3 CIRCUITS REQUIRING TIME DERIVATIVES OF INDEPENDENT SOURCES

2.5.3.1 Derivation of the AC Solution

If the circuit topology is such that a source time derivative is
required in order to perform a transient analvsis*, then this same require-
ment is also imposed on an AC analysis. However, there is one important
difference. In the AC analysis program, unlike the transient program. the
user is not required to supply the derivative. The AC program automatically
supplies the needed information and proceeds.

The derivatives are treated internally as follows:

r,'ﬁn-:r'-'l—‘ et e e et e e atd

* Independent voltage sources together with a capacitor tie-set, or
Independent Current Sources together with an inductor cut-set.
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Let this situation be characterized by

X = AX + GV + (QV where,
(116)
5 = o jwt
v (te) = K (w)e
Then the solution of Equition (116) is of the form
x = xelvt
)

Thus,
jwt) i ng (Keju.‘t

4 jwe

jwt
dt ot

X, ) = AKX e ) + G(Ke )

jwt jwt jwt

Juwt + GKe + jwQKe

jwX e = AX e
(o] (o]
and
(Jwl-A)X = K + JuwoK
x0 = (JuwI - A)'1 (GK + jwQK)

Substituting our similarity transformation gives

X S(Gwl - v s7hek + jwQK)

o}

S(JwI - \)'l [(s'lck) + jw (S-]'QK)] (117)

X
o

Equation (117) represents the AC solution to the state variable Equation
given in (116), The second term in the brackets represents the additional
computation required, at each frequency, due to the presence of all source
derivatives.

2.5.3.2 Q Matrix Calculation

This matrix was also derived, using the differential equations of
Section 2.3.1. It 1is listed here for continuity.

U

Q1 2
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where

T T
(-MLI) [Byg Lgg Bgg + Ly Bgg

T
(-C44I) B14 MSI B17

= 0
2.,5.4 CIRCUITS CONTAINING LINEARLY DEPENDENT SOURCES AND REQUIRING TIME
DERIVATIVES OF INDEPENDENT SOURCES

This case presents no difficulty. It is simply a combination of
Cases (2) and (3).

E
¥
[
i
f
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SECTION III

SYSTEM OPERATION

3.1 INTRODUCTION

The SCEPTRE System is a FORTRAN IV computer program written for the IBM
7090/94 and 360 Data Processing Systems. It consists of two major phases.
The first, called the Program Generator, creates (on a disk or tape data
file*) another FORTRAN IV computer program containing circuit equations for
electrical networks. SCEPTRE does this automatically, using the input data
describing the circuit to be analyzed. The second phase, the Circuit Solution
Executive, computes the circuit response by solving these equations generated

in the FORTRAN IV program.

Operation of the SCEPTRE System depends upon the Monitor System, IBSYS
(operating system 0S/360) which controls its execution. Under control of
IBSYS (0S/360), SCEPTRE executes in two phases as separate job steps that
are loaded and executed sequentially. Prior to loading, however, IBSYS (0S/
360) performs any required FORTRAN compilation. Programs to be compiled do
not have to reside on the standard input file upon which the input data are
stored. Instead, the system can be instructed, via the job control language,
JcL to compile the load programs from an alternate input file. SCEPTRE uses
this feature of IBSYS (0S/360) as a means of linking its two job steps. This
is illustrated in the System Flow Diagram, Figure 12,

3.2 PROGRAM GENERATOR

The Program Generator is an executive program that controls the inputting
of circuit description data, generation of a FORTRAN IV subprogram for calc-
ulating circuit response, generation of circuit parameter data, storage of
circuit models on library files, restart of discontinued runs, and re-outputting
of computed results. Each of these six program tasks as well as the Program
Generator (EXECl) are described in the flow diagrams, figures 13 through 18.

3.2.1 CIRCUIT DESCRIPTION PROCESSOR

The SCEPTRE circuit description language is used to describe electrical
networks. This application-oriented language is powerful, easy to learn and
use, and nearly format free. With 1it, circuits composed of fundamental
circuit =lements and prestored circuit models can be described. The types
of fundamental electrical characteristics allowed are resistance, capacitance,
inductance, current and voltage sources, and mutual inductance. Using the
same components and circuit description language, equivalent circuit models
of devices such as transistors and diodes can be described and stored on a
library file for future use. When a stored model is referenced in a circuit
description, it is located on the specified library file and its elements
appropriatzly substituted into the circuit being described.

*This term "file" in this section refers to disk or tape file for the
S/360 and to a tape file far the 7090/94.
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Often, when a model is called out in describing a circuit, the desired
parameter values are different from those originally specified. Rather than
permanently change the stored model, the SCEPTRE circuit description language
allows model parameter values to be changed when model element substitution
takes place.

3.2.2 MODEL EDITOR

Using the SCEPTRE circuit description language, circuit models const-
ucted by the user can be stored on a model library file by the Model Editor
program., One permanent library file and one temporary library file are
provided for storing models., Circuit models may be an arbitrary n-terminal
configuration of the allowed fundamental circuit elements. Any model so
described can be stored on either library file using the Model Editor Program.

3.2.3 CIRCUIT EQUATION GENERATOR

After the description of the circuit to be analyzed has been reconstructed
in memory of the Circuit Description Processor, the FORTRAN IV sub-program called
SIMUL8 is created. It contains D-C steady-state, transient, and/or AC solution
equations, depending on the type of analysis requested by the user. These
equations are based on the formulation presented in Section II of this report.
The SIMUL8 program is written on an output file (PROGRAM SAVE TAPE) and stored
until the second phase of SCEPTRE operation, when it will be compiled and
executed.

3.2.4 DATA GENERATOR AND RERUN PROCESSOR

Essentially the SIMUL8 program contains only the circuit equations for
the network under investigation. The parameter or component values of the net-
work are stored separately as input data to the SIMUL8 program. The Data Gen-
erator program organizes and stores the circuit data on the PROGRAM SAVE TAPE.

Once a circuit has been described to SCEPTRE, multiple or repeated
circuit solutions can be run by changing parameter values between runs. The
circuit description language is used to specify the number of repeated runms,
each known as a rerun, and the changes in parameter values desired for each
rerun. The Rerun Processor interprets and processes this information. The
Data Generator then creates and stores one block of circuit data for each
rerun on the PROGRAM SAVE TAPE. Since only parameter values are changed between
reruns (i.e., no topological changes), the SIMUL8 program containing the original
circuit equations is simply re-executed during the solution phase using the data
created for each rerun.
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3.2.5 CONTINUE PROCESSOR

The Continue Processor allows previously terminated transient solution
runs to be restarted and continued. In addition, it is necessary that the
PROGRAM SAVE TAPE from the original transient solution run be available.

This file contains, in addition to the SIMUL8 program, all of the parameter
values and data required to continue the transient solution. The Continue
Processor also allows certain run control parameters to be changed and used
for the continuation of the original :transient run.

3.2,6 RE-OUTPUT PROCESSOR

The SCEPTRE user may Wwish to re-create both the printed and plotted
outputs for a particular transient analysis run. This can be done, providing
the OUTPUT SAVE TAPE is saved from the original solution run, by using the
Re-Output Processor. Several changes in the output can be made during a Re-
Output run. For example:

-~ Output labels can be changed

- New quantities can be plotted

- The order in which output quantities are printed out and plotted
can be changed

- Printing and plotting of output quantities can be suppressed.

3.3 SOLUTION EXECUTIVE

In the second phase of SCEPTRE operation, the FORTRAN IV sub-program
SIMUL8 is compiled and executed. During this job step, IBSYS (0S/360), is
instructed to read the SIMUL8 program from the PROGRAM SAVE TAPE, compile it,
and then link edit it along with the other required programs.

Execution commences, as shown in figure 18 with the reading of the run
control parameters from the PROGRAM SAVE TAPE. Then the SIMUL8 program is
called. It reads the remaining circuit parameter values stored on the PROGRAM

SAVE TAPE and then enters the circuit solution equations. The circuit equations
are solved, thus computing the state-variable derivatives. Calling the selected
numerical integration routine then produces new values of the state variables for
the next time step. At the conclusion of each successful integration step, the

requested output quantities are buffered in memory. When the buffer is full,

it is written on the OUTPUT SAVE TAPE as binary data. After the circuit solution
is complete, control is returned to the Solution Executive Program, whereupon the
contents of the OUTPUT SAVE TAPE (computed results) are re-formatted in lists and

graphs and stored on the SYSTEM OUTPUT TAPE for peripheral processing.
If any reruns were requested, control is then returned to SIMUL8 for re-

execution of the solution phase and subsequent outputting. This recycling is
continued until all circuit reruns have been processed.
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At the conclusion of each transient solution, the critical parameter
values and data are stored on the PROGRAM SAVE TAPE. Thus, 1if the file is
saved at the end of the run, the solution can be continued at some future time.
Use of the Continue Processor allows previously terminated solution runs to be
restarted and continued with changes in the run control parameters.

Transient solution runs may be terminated or simply saved by the computer
operator by depressing sense switch No. 6 on the 7090/94 console, or by
appropriate changes to the Data Definition (DD) cards on the S/360. (See
subsection 7.4.3.2 of Volume I). Using this feature, a PROGRAM SAVE TAPE
could, for example, be generated every 15 minutes on long running transient
solutions, eliminating the need for repeating previous calculations in the
event of an abnormal run termination.

If, at the conclusion of a transient analysis run, the OUTPUT SAVE TAPE
is saved, the Re-Output Processor may be used to reproduce lists and graphs
of any of the circuit quantities originally requested for output. In addition,
graphs of variables plotted against variables other than time which may not
have been requested originally can be conveniently produced.
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SECTION IV

SPARSE MATRIX TECHNIQUES

A very common operation that is performed in many aspects of scientific
digital computation 1is solution of the system

Ax=0b (118)

where A is a coefficient matrix, b is a known vector of forcing functions and

x is the vector of unknown quantities to be determined. Conventional techniques
have of course long been known., Gaussian elimination or Gauss-Jordon methods
are standard in most numerical analysis texts. The need for improvement becomes
evident however when A becomes large. If A is of order n, these methods require
a little more than n2 words of core storage. When n = 100, more than 10,000
words o) core are committed to this operation alone. Yet the larger A is, it

is usudily true that the percentage of zero elements, or sparseness, increases.
A sparseness of 90 percent is not unusual when n>-100. A sparse matrix technique
then, can reasonably be defined as any method that takes advantage of the
inherent sparseness of an often used matrix to perform computation with some
significant saving of storage and sometimes even solution time.

The most pressing need for some type of sparse matrix technique in SCEPTRE
occurs in the DC algorithm. The nature of the mathematical formulation is such
that the A matrix corresponding to Equation 118 is equal in size to the number
of network resistors plus semiconductor devices. Experience has shown that
the largest A matrix that could be solved within 200K bytes in the System/360
was about 120 x 120. This problem caused some runs to fall ii'at otherwise
could have been easily accommodated.

The specific method that was implemented is based upon triangular de-
composition (Ref. 17). If A~l exists, then A can be decomposed as

A=1LU (119)

where L is a lower triangular matrix and U is an upper triangular matrix as
shown below:

) i ]

lel AR 1w, Y3 = Yy

L7 pp 0 - 0 0 1 Yy == g

= | 431 %32 A3 7 O 4 6 0 1 == Yy
Ln1 znZ £n3 o 2nn LO 0 0 & 1 i

The matrices L and U can be generated from the original A matrix by use of the
recursive relations
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Once L and U have been generated, solution may proceed in a straight forward
manner. Since the basic problem can be written in the form of Equation 118
where vector X represents the unknowns, then substitution of Equation 119 in
118 gives

LUX=bD (120)
Define
Y=UZX (121)

which transforms Equation 120 to
LY=»D (122)

.quation 122 is in a form suitable to solve for Y by a simple front substitution
process. Once Y is known, Equation 121 can be solved by back substitution to
arrive at the desired system unknown X. The attractiveness of this method is
that it lends itself to an indexing scheme that can work with only nonzero
elements of L and non-zero off diagonal elements of U. If A is large and
sparse, a significant storage advantage can be realized.

The new sparse technique was tested on two circuits that were ftar larger than
could have been handled with the existing method within 200K bytes of core.
The first circuit was composed of 200 resistors and semiconductor junctions
and the resulting A matrix was well over 90 percent sparse. Accurate convergence
was obtained in seven passes. The second circuit contained 290 resistors and
semiconductor junctions and a check of the A matrix revealed over 95 percent
sparseness. This circuit also converged accurately in seven passes. If this
same network was solved with the conventional technique, approximately 800K
bytes of core storage would have been required. A series of smaller networks
were also solved with the sparse technique and in every case the solution
converged to the same result in the same number of passes as did the existing
method.
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Since this method is attractive for large A only, it has been programmed
into SCEPTRE such that it becomes operational for networks containing 70 or
more elements with DC analys.s requested. The conventional Gauss-Jordan
technique will continue to be used for smaller networks. The sparse technique
will also be applied to the transient portion of the program for the solution
of larger problems. It is clear that this technique 1s a necessary prerequisite

in eventually permitting the analysis of very large circuits.
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SECTION V

ASSEMBLER LANGUAGE INPUT/OUTPUT (I1/0)

SCEPTRE was originally written in FORTRAN IV on the 7094 Computing System
and was later converted to 0S/360 FORTRAN 1V (ll-level, Optimization =2). The
decision to program in FORTRAN facilitated conversion of the program for use on
other computing systems; but it also resulted in increased CPU time requirements
for the -rtup phase. In an effort to reduce this time requirement it was deter-
min2d rnat FORTRAN I/0 accounted for more than 50 percent of the total CPU time
used, particularly for small problems. Since the CPU requirements for assembler
language I/0 is at least 807% less than that required by FORTRAN 1/0 with FORMAT,
the FORTRAN I/0 was replaced with assembler language I/0 with the exception of
output directed to the printer. The Implementation of assembler language I/0
into the setup phase and the resulting improvements are discussed in the follow-

ing paragraphs.

Three assembler language subroutines were written to perform the functions
of the FORTRAN 7/0 statements READ, WRITE, and ENDFILE. These subroutines
utilize GET and PUT assembler language instructions to perform the 1/0. Since
these subroutines transfer data to and from core storage in blocks of 80 bytes
(characters), the logical record lengths and the record formats for the affected
data sets must be 80 bytes and fixed block ‘FB), respectively. The physical
record leng.hs (i.e., BLKSIZES) can be any uultiple of 80. The technique of
selecting the proper data set for transferral of data is via the DDNAME of the
data set. An eight character DDNAME for each data set is initialized in the
BLOCK DATA subroutine. The DDNAMEs used are as shown in the SCEPTRE Program
Control Deck in Volume I, Figure 8l1. If for some reason the user desires
different DDNAMEs, he need only make the appropriate changes in BLOCK DATA
and his SCEPTRE Program Control Deck. No reformatting of tne I/0 is perfoimed
by the assembler language subroutines unless the amount of data to be trans-
mitted is less than 80 bytes. In this case, the remainder of the record is

padded with blanks.

The implementation of assembler language I/0 did not require an extensive
programming effort to reformat the I/0 data. Much of the I/0 of the setup
phase involves reading and writing data where the core storage and data set
representation are both character format. Conversion to a character format
and vice-versa was necessary for the data where the core storage representation
was integer or real constants. This includes circuit data stored in the pro-
gram save data set and indices in the model library data sets. The reformatt-
ing of this data was performed by FORTRAN subroutines.
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An effort was made to ensure that the addition of the assembler language
I1/0 would not complicate the task of converting the SCEPTRE/360 System to
other computers. All replaced FORTRAN I/0 statements and their associated
FORMAT statements were made comments and left in the programs. To assist in
the identification of these statements, the character "X" was also added in
column two of the commented statements. Most of the I/0 conversion effort
only requires that the calls to the assembler language routines and the
characters "CX" from column 1-2 of the FORTRAN I/0 statements be removed.
Other statements to be deleted can be easily identified.

The results of the improvement in the execution speed of the setup phase
are shown in table IV: The improvement was 60 to 75 percent for small problems.
Although the improvement was only 30 percent for the large problem there was
a significant reduction in total CPU time. As shown in table VI the timing
tests were runs made on an IBEM System 360 Model 65 computer. The finished
product will appear transparent to the user in that the I/0 data itself will
retain its usual format.

TABLE IV.
TIMING TESTS OF THE SETUP PHASE
USING FORTRAN I/0 AND ASSEMBLER LANGUAGE I/0

CPU Time Requirements for
the Setup Phase (seconds)

Test Circuit FORTRAN Assembler
1/0 Language 1/0
Example 1 from SCEPTRE
User's Manual 11 5
Example 2 from SCEPTRE
User's Manual 24 9
Example 3 from SCEPTRE
User's Manual 23 6
Example 4 from SCEPTRE
User's Manual 11 5

221 Element Circuit
(Transient Solution
Only) 90 62
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APPENDIX A
IMPLICIT INTEGRATION IMPLEMENTATION

A.1 INTRODUCTION

Two basic factors are involved in the amount of solution time required
to complete any transient problem; the number of steps or solution increments
needed and the amount of computation required per step. The first of these
factors is controlled entirely by the type of numerical integration method
that is used to integrate the system of differential equations generated.
This system can generally be expressed by the matrix equation:

o
Y = AY + BU, ¢H)

]
where Y is the vector of state variables, Y is the vector of state variable
derivatives and both A and B are appropriate coefficient matrices.

It is well known that the step sizes that can be taken by all explicit
numerical integration methods are limited by the largest system eigenvalue.
This limit is often referred to as the stability radius,and it differs from
method to method. For example, if llm | is the absolute value of the largest
eigenvalue of A in Equation (1), then for most well known explicit methods

hm < X (2)

where hm is the maximum step size that may be taken. If larger steps are taken,
the solution will begin to oscillate. The quantity X in Equation (2) is equal
to 1 for Euler's method, 2 for the explicit trapezoidal method, 2.78 for Runge
Kutta and 6 for TRAP 2 which 1s currently an optional choice in SCEPTRE. No
constant value for X can be given for XPO, but it too has a stability limit.

If |Am | is large for any network, Equation (2) will force a small step size
and therefore require that many solution steps be taken with an attendant rise

in computer solution time.

There has been a recent trend in mathematical literature toward integration
methods that do not exhibit the limitation inherent in Equation(2). A generalized

form of these methods can be given as
P

P -
= +h b, Y
Yn+1 ZS ay Yn-i 22 il =i (3)
1=0 i=-1

where the Y and h quantities remain as previously defined and the a and b
quantities are usually, but not necessarily, constant. Multistep methods are
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introduced if index P#0. The simplest derivative form of Equation (3) occurs

if coefficlents a

=1, b_l = 1 and all others are set equal to zero. We then
have

0

o
= 4
Yn+1 Yn +h Yn+1 (4)

which is commonly referred to as the implicit or backward Euler technique.
This technique can be shown to be unconditionally stable, and has given marked
speed advantages over all of the explicit methods in SCEPTRE whenever the
latter has been affected by the limitation implied in Equation (2) A major
disadvantage of this particular method lies in its inaccuracy for some types
of problems. Implicit or not, it is still a first order method and tests

have indicated that both XPO and RUK can be considerably more accurate. The
next well known variant of Equation(3) is set up if coefficients a; = 1,

b_1 = 0.5 and all others are set to zero. This choice sets up

h
+ > Y

o
Y = Y +--}l Y
n 2 n

n+l n+l, (5)

a method called implicit trapezoidal integration. This method is considerably
more accurate than the first order variety, but has lost the quality of
unconditional stability. Under some computation circumstances oscillations

can occur and render the analysis suspect. Therefore, after considerable

testing and consultation with the Air Force Weapons Laboratory, it was decided

to implement a multistep (Ref. 8,9) version of Equation (3) that automatically
chooses 1< P <6, A good deal of testing has been performed on this implementation

and the resultant conclusions are given in the following paragraphs.

A.2 MANUAL EXAMPLE 1

The first practical network to be run on SCEPTRE with implicit integration
was example 1 in the SCEPTRE manual Vol. I, Section 4.1. This particular net-
work contains a significant spread in eigenvalues due to the small transistor
capacitors and the larger load capacitor. A master run with two associated
reruns was made and a summary of the number of integration steps and passes
required by both the original explicit method and the new implicit method is
given in Table IV. Since this network did exhibit a significant spread in
eigenvalues, the implicit results were much faster. No practical difference
in accuracy was noted in any part of the runs,

Note: Large Eigenvalues can inhibit the step size and small Eigenvalues can
make a large problem duration necessary. Therefore it is the spread
in Eigenvalues that often causes difficulty for explicit integration

methods.
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TABLE A-1
COMPARISON OF EXPLICIT AND IMPLICIT INTEGRATION
ON EXAMPLE 1
! Explicit Implicit
!
i Passes Steps Passes Steps
Master 6441 3049 291 126
First Rerun 6065 2867 480 155
Second Rerun 5972 2832 255 112

A.3 A PRACTICAL 1LLUSTRATION

i

e are
i CE = Cte b en Te Je
g
= +
] CC th ei Ts Jc
-
- where
E
1 ' Cte* = emitter transition capacitance = 3 pf
4
d th* = collector transition capacitance = 3 pf
_ -1
: en = 30V
3 {
] & - 357t
; T = 0.2 ns-fy = 800 mc
3 e
T = 5 ns
! s
Je = forward emitter junction current
Jc = forward collector juaction current

*
The transition capacitances are assumed to be constant here.
does not affect the point of the discussion.
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The next network to be discussed delves a bit more deeply into the
practical situation that gives implicit integration an advantage over
explicit integration. Consider the circuit in Figure 19 in which a two-
stage transistor circuit drives a large capacitive load. Let the equivalent
circuit component data be such that the emitter and collector capacitances

This simplification
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Figure 19. A Practical Illustration

If the input signal contains high frequency -omponents,or if the performance

of the individual transistor stages are of interest, the user cannot ''cheat'

on the equivalent capacitor values. The available component data must be used
in Equations (6) and (7) even if these lead to very small values of capacitance.
On the other hand the values used for Rp3 and Cp, lead to an output time constant
of 2 ms which in turn requires a problem duration of about 10 ms if the entire
transient is to be observed. The familiar eigenvalue spread has been created.
When this problem was solved with explicit integration (SPO), 10,000 passes
were required to get to a problem time of 58,000 ns - far short of the required
duration. Solution with the new implicit method covered the entire transient
in 520 passes. With this data one can claim an improvement factor of 3260.

This is based on a factor of 19.2 fewer passes to achieve a problem duration

of another factor of 170 greater. Entire papers have been written that were
based on statistics like this.
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The same network can be used to illustrate that there 1is still a future
for explicit integration. If components Ry 3 and R are removed from the
network, so is the large time constant and any need to run the problem for
anything like 10 ms. In fact, 100 ns 1is more than sufficient to cover the
entire transient period. What has been done in effect is to remove the
large spread in eigenvalues. This change in computational circumstances
also changes the relative efficiencies of the integration methods. Explicit
integration now completes the problem in 297 passes while implicit requires
409 passes. Without an eigenvalue spread, the implicit method has lost its
large speed advantage and has become about 40 percent slower.

The complete input listing of the circuit of Figure 19 including the
model description is given on the next page. It is interesting to note that
the Rerun mode may be used to easily perform comparisons between implicit

integration and explicit XPO.

A.4 EIGENVALUE SPREADS

A series of runs and reruns were made in order to gather comparative data
on the performance of XPO and the implicit method as a function of selected
eigenvalue spreads. This information 1s summarized in Table A-II. With a small
spread of ten, it is seen that implicit takes more solution passes than does
explicit - hence an improvement factor of less than unity. As the spreads
of eigenvalues are progressively increased, implicit integration becomes
comparatively more attractiveyand the trend would become more marked if the

spread sequence had been ccatinued on.

The forcing function used in all runs was a 1 V step function in order
to avoid complicating effects from that direction. If more complex forcing
functions were used, it is likely that the improvement factors that are listed
in Table III would be modified and in some cases quite significantly. Since
this is true, the listed factors should be considered to be valid only as an
approximate guide that illustrates the potential of implicit integration
under favorable circumstances.

TABLE A-11

EXPLICIT-IMPLICIT COMPARISON AT
SELECTED EIGENVALUE SPREADS

Eigenvalue Explicit
Spread (XPO) Implicit Improvement
(approximate) Passes Passes Factor
10 113 146 0.77
100 237 171 1.4
1000 703 180 3.9
10000 1807 190 9.5
10000 6664 184 36.0
10 16578 185 90.0
107 *20000 193 238.0
108 *20000 189 996.0
*The last two runs were not carried through the complete transient
solution, but were terminated by the program pass limit. The
improvement factors for these runs include an extrapolation term
that is based on the portion of the run that was not completed.
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MODEL DESCRIPTION

MODEL ZZ (TEMP) (B-C-E)
ELEMENTS

RB,B-X=.3

RC,C-Y=.015
CE,X-E=X1(3.+6.*JE)
CC,X-Y=X2(5.+175.*JC)
JE,X-E=DIODEQ(1.0-7,30.)
JC,X-Y=DIODEQ(1.D-7,35.)
JX,Y-X=.98*JE
JY,E-X=.1*JC

OUTPUTS

VCE,VCC,PLOT

CIRCUIT DESCRIPTION

TWO STAGE CIRCUIT WITH LOAD
ELEMENTS

E1,1-2=TABLE]

RB1,2-3=2
T1,3-4-5=MODEL ZZ
£2,1-4=10

RL2,4-7=.5

RE,1-5=.2

RB2,5-6=.5
T2,6-7-1=MODEL ZZ
RL3,7-9=1

CL,9-1=2E6

OUTPUTS

VCL ,XSTPSZ ,PLOT

RUN CONTROLS

RUN INITIAL CONDITIONS
INTEGRATION ROUTINE=IMPLICIT
STOP TIME=1E7

FUNCTIONS

TABLE1

0,0, 50,5, 100,5

RERUN DESCRIPTION

RUN CONTROLS
INTEGRATION ROUTINE=XPO
MAXIMUM INTEGRATION PASSES=10000
END

JguL
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A.5 JACOBIAN CONSTRUCTION

The need for a Jacobian, or matvix of partial derivatives, arises in the
derivation of the corrector iteration of the implicit integration method that
has been implemented. This need is common to all implicit methods, both
single step and multistep. An m dimensional generalized form of the Jacobian
appears in Figure 20. Two different philosophies exist concerning the most
efficient method of forming this matrix. The first is based on a symbolic
approach in which each element of the Jacobian 1s set up in terms of the literal
R, C, L and G components that constitute a given problem. Its advantage lies
in the fact that the matrix can be constructed just once and updated as often
as required depending on the progress of the solution. Furthermore, the up-
| dating process is just a simple matter of data insertion without any need to
! recompute the system derivatives. When large problems are encountered, sparse
matrix techniques can be applied without difficulty. The disadvantage 1is
that some combinations of topologies, dependencles, and element values are
encountered such that the Jacobian that is constructed this way is significantly
in error. In these cases the average solution step size that can be taken is
sometimes significantly reduced and inefficient operation can result.

[ _F F .
i d°1 31
3y (Yl, Boc Ym, (=) 5K SY (Yl, o Ym, t)
1 m
; :
3 | Y (Yl’ S50 Ym, t) ... =Y (Yl, Y Ym’ t)
g L 1 m
i Figure 20. The General Jacobian
l The second method is purely numerical in nature and can be referred to
( as "numerical differencing". It produces an approximation to the desired
partial derivatives as indicated in Equation (8). These approximations are
t made by making m
; '8 -¥
H aFi _ i (Yl’ LI Y Ym’t) i (Yl, s 0. Ym’t) (8)
Y, W = Y
, J J J
b additional derivative computations each time the Jacobian is to be updated.
b The advantage of this approach is that it is universal in that theoretically
L it should produce a good approximation to the true Jacobian for any transient
’ problem, Its principal disadvantage is that it requires additional solution

passes. The number of additional solution passes will be equal to mX where X
is the number of Jacobian evaluations required during the course of a given
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problem. A second disadvantage is that this method does not readily lend
itself to the use of the L-U decomposition sparse matrix technique that is
used in the program.

The program will automatically choose between the two methods of Jacobian
construction. The procedure that is followed is to categorize all the transient
problems that are to be solved with implicit integration into three groups
according to the number of state variables contained, m.

Group 1 - m<10
Group 2 - 10< m <50
Group 3 - m >50

The program default is set to use the numerical approach for Group 1
problems. The reason for this is th': both of the disadvantages of this
approach (m X extra derivative evaluations and additional core requirements)
are greatly minimized for small problems. Exactly the converse is true for
Group 3 problems so the default choice then becomes the symbolic approach.
When the medium size problems represented by the Group 2 classification are
encountered, a series of checks will be made. These checks will examine the

problem for topological conditions that could lead to error as v~ ... the
presence of user supplied differential equations. If any ol .. .. .48 are
positive the numerical approach will be taken. If not, symbo' .- .action

of the Jacobian will be used.
A method has also been provided to allow the user to specify '..e type of
construction to be used which will bypass the default mechanism. If either

the numerical or symbolic approach is desired the respective entry under RUN
CONTROLS 1is

USE DIFFERENCED JACOBIAN
USE SYMBOLIC JACOBIAN

A.6 PRESET STEP SIZE CONTROLS

The explicit integration routines in SCEPTRE have preset quantities
that control the maximum, minimum, and starting step sizes. These are
identical for all of the explicit methods and are as follows:

MINIMUM STEP SIZE = 1 x 10-5 (STOP TIME)
MAXIMUM STEP SIZE = 2 x 10-2 (STOP TIME)
STARTING STEP SIZE = 1 x '].0-3 (STOP TIME)

The preset quantities have been found to be inappropriate for implicit
integration and have been replaced with the following:

MINIMUM STEP SIZE = 1 x 10™™* (STOP TIME)

MAXIMUM STEP SIZE = 2 x 107> (STOP TIME)

STARTING STEP SIZE = 1 x 1073 (STOP TIME)
-86-
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Any of these may be replaced with a different constant at the discretion of
the user with a simple entry under RUN CONTROLS. This format is

MINIMUM STEP SIZE = number
MAXIMUM STEP SIZE = number
STARTING STEP SIZE = number

The error control differs most markedly from that used for the explicit
methods in that the estimated error 1s not computed and checked for each
individual differential equation; but is computed and checked for all of
the equations together just once each step. If a given problem consists of
m state variables, the following relation is computed at the end of each

integration step:

2 2
D= Ei + . G Em
(¥ Y,

where the Ei terms designate local error estimates for each differential
equation and the Yi are the state variables with O0<i<m. The step is

accepted if
D<g *MINIMUM ABSOLUTE ERROR

where g is a constant that depends on the current order of the integration
method and MINIMUM ABSOLUTE ERROR has a preset value of (¢.001, The nomenclature
notwithstanding, this is a relative error control since the magnitude of the

state variables enter the computation.

Some testing has been performed to determine the erffect of other values
for MINIMUM ABSOLUTE ERROR. No significant improvement was found in the
inevitable speed-accuracy tradeoff. What was found however, was that larger
values which lead to significant speed improvements did so only at the cost
of unacceptable degradation in accuracy. The user is free to experiment
along these lines by entering under RUN CONTROLS, MINIMUM ABSOLUTE ERROR =
number. The remaining error criteria (MAXIMUM ABSOLUTE ERROR, MAXIMUM

RELATIVE ERROR and MINIMUM RELATIVE ERROR) will have no effect on the implicit
integration method.
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APPENDIX 3
B MATRIX DERIVATION

The derivation of the general B matrix that expresses link voltages in
terms of tree branch voltages and tree branch currents in terms of link
currents is as follows:

Two fundamental incidence matrices that arise from network topology
theory will be called the Q and T matrices here. The fundamental cut set
matrix, Q = [qu] is a matrix containing (n-1) rows and b columns for a net-
work containing n nodes and b elements, where:

= +]1 1if the ith fundamental cut set direction coincides with the
reference direction of the jth element

qij

qij = =1 if the ith fundamental cut set direction is in opposition to
the reference direction of the jth element

qij = 0 if the 1th fundamental cut set does not include the jth element

If the elements are properly ordered, it is always true that
Q= [-BT U]

where the columns of the unit matrix U correspord to the tree branch elements.
The fundamental circuit matrix, T = [tij] is a matrix containing m rows

and b columns for a network containing m independent loops and b elements,
where.

tij = +]1 if the ith independent loop direction coincides with the
reference direction of the jth element
tij = -1 if the 1th {ndependent loop direction opposes the reference

direction of the jth element
tij = 0 if the ith independent loop does not include the jth element

If the elements are properly ordered, it is always true that
T= [U B)

where the columns of the unit matrix U correspond to the network links,
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Since it is always true that

QIb =0, T Vb =0

direct substitution yields

[.BT u] [I;B] - 0 and [“ B] [‘v’;] "0

Expansion of these relations gets

I = BT I and VL = =B V

TB L TB

so that the tree branch currents may be expressed in terms of the link currents
and the link voltages may be expressed in terms of the tree branch voltages

through the B matrix.
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APPENDIX C
DIODE REPRESENTATION IN THE INITIAL-CONDITIONS PROGRAM

The current in a diode or transistor junction at a point on its voltage
vs. current (V/1) characteristic may be separated into two components as
J = GJVJ+Q. Consider the typical diode curve below.

[3
k

CURRENT, J

RO o RS ke J 0 U

VOLTAGE, E* Vv

Angle a; = angle a, is enclosed by the slope of the diode characteristic
at any point and the hor%zontal at that point. E' is an offset voltage that
marks the intersection of a continuation of the slope Gj and the line J = 0.

§ From the figure:

tanal-tana2=GJ=b—_é—,—

= - L
or J GJ VJ GJ E

VJ + Q if Q is defined as -GJE'

Ty

or J = GJ
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APPENDIX D
BASIC NEWTON-RAPHSON METHOD

Given a single algebraic or transcendental equation of the form F(x) = 0,
that 1s single valued and differentiable in the domain of interest, a Newton-
Raphson procedure can be constructed using

F(x) + —%%ELAx=O

BF(XO)
An initial x = xp may be assumed and F(xo), —7§;_—— determined.
-F(xo)
Then Ax 3F(x0) and X) =X+ Ax
dx

The procedure is repetitive until

F (x -F(xﬁ\) <z

n+l)

where 2z is some specified convergence criteria. When this last relation is
satisfied, the process is said to have converged. Extension to systems of

equations adds no complications.
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APPENDIX E
EQUIVALENCE OF EQUATIONS (72) AND (72')

To show the equivalence of equations (72) and (72'), it will be
sufficient to show that

: - 1 b
Rg @1 (Vg Vp, Vs) -Lr -Bg7 E,

; v, ~[z17} F, (Vg V¥, V) =(2] -B27 Ej
?— v, Fy (Vg, Vy, Vs) |}95 T+ By Ta] Qg + Bgs 'Jg |
5 or T )
;F A [ -Bg7 Ey I [F) (Vg Vy Vs )]
’ Val =277 By & | Fp (Vg V5,V5)
i s IE%T*BOSTO’] Q + Bgs TJ& A
; or
Vo] T “Bgy E; T [FL W,Y, V97

[z} fv,] = “By7 By + | F2 (g Y, Vs)
E’ s L[395T 8 BosT"] % + Bgs Iy | R A v
| The left side of the equation expands into
P B V9 + Bgs VS 1

| Vo ¥ By5 Vs
y [395 T+ By TO’] Ggly = Bpg SppVy + G55V

==
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and the right side, upon substitution of equations (65) through (67) becomes

which shows the equivalence.

V9 + 895 V5

V2 + st V5

B T + X \'J B
= |Bgs * Bys @[ CggVg ~ Bys
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APPENDIX F

ADJOINT NETWORK FOR SENSITIVITY

A number of papers (Ref. 10, 11) have been written on determing the un-
normalized sensitivity (i.e., partial derivatives) of network functions with
respect to network elements by an adjoint network. To find the sensitivity
of any network function by this method, two analyses are required, one of the
given network and the other of the related adjoint network. This appendix
describes the generation of the adjoint network for DC calculations in SCEPTRE.
A detailed derivation of the adjoint network for sensitivity is given in
References (10) and (11). Due to the sign conventions followed in SCEPTRE,
the terms given in tables F-I and F-1I differ, in sign, from those given by
Director and Rohrer. (Ref. 10, 11) Table F-I describes the relation between a
given network and its related adjoint network. It also describes the allowed
dependent variables (network functions) and independent variables (network
elements). Table F-II describes the forcing functions for the adjoint network
and the sensitivities. The superscript "a" in the tables indicate the currents
and voltages in the adjoint network.
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Secondary current sources in the given network introduce voltage
dependent voltage sources in the adjoint network (shown in Table F-I),
This requires modification of the Jacobilan. Derivation of the modified
Jacobian follows. Let us classify the voltage sources, arising in the
adjoint calculation due to secondary sources (J@'s) in the main circuit,
as E_ 's,

D

The B matrix from the L tree which includes the ED’s 18 as shown below.

Class C4 Class R5 Class L6 Class E7 Class ED
Class C, B4 B1s B16 By7 B1p
Class R2 0 st BZ6 327 B2D
Class L3 0 0 B36 B37 B3D
A58 g Bg4 Bgs Bg6 Bg7 Bep
Class Jo Bg4 Bgs Bog By7 Bop
Class Jﬁ B¢4 B¢5 B¢6 B¢7 B¢D

The following equations arise from the above B matrix if vectors Vg,

V3, I4, Il and submatrix 394 are assumed to be zero. These assumptions

are based on the known final values of V6’ V3, I4 and I1 for the initial

condition problem and on the absence of any current-source and capacitor

cut sets.
| I, = BysT, - Bgglg = BosTg - Bogly = O )
Vy * BysVs * BysBy + Byplp = O ()
‘ Vo + BV, + By E, + B =0 3)

g T BgsVs * BgyE; + BopEp

To express Equation (1), (2) and (3) in terms of VS’ V2, V9, J8
and E7 the following equations are required.

= G .V (4)

I, =G,,V (5)
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J (6)

9 = Ggg¥g + Q
J. = aJ (7)

For the definition of G5, G,,, ) Ggg and Qq, see subsection 2.4.1.

Two more equations required for complete derivations are (8) and (9) below.

*
ED -V (8)

*
where @ 1is the diagonal matrix whose (i,1) element is the non-zero entry
of the 1™ row of  (Equation 7), f.e. it is the coefficient of the Jg on

which the ith Jo depends.

The absence of any current-source cut set in the given circuit makes

BOD equal to zero. This gives...

VJ0 + BOSVS + BO7E7 = 0 9)

From Equations (1) through (9), we get...

T T T ]
Gs5Vs - stczz‘z BgsJg = [Bgs + Bps @1 [GggVg + Qgl = 0

* *
v, + [B25 a BOS]VS + [BZ7 - BZD o BO7]E7

2 Bp

*
Ve + [B - B a B07]E7

Vg + [Bgg 9D

9 Bop @ 05]

Following through a derivatioa similar to that done in subsection 2.4.1
we get Equation (10). Egquation (11) is the original SCEPTRE derivation.

Vs (n+1) “BysGy  [BostBos @lGeg ) [ [Bgs+Bosallghys 8

V) (atl) ; ; BB,y @ 305] I z ’[-BZ7+B2DQ*BO7]E7

V9 (n+1) [Bgs-Byp, @ "Byl 0 [-Bg7+Bgp @By, I8,
(10)
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B Lo Rl

G

-1
T
Vs (n+1) Gss TAY) “’95 os‘”c [395 05 °]Q9+385J8
(11)
V3 (1) Bas L € -B,;E;
Von+1)) \ Bos L i ~Bg;E;

Comparison of Equations (10) and (11), shows that terms get added to the
(2,1) and (3,1) terms of the Jacobian and to the forcing function column
vector of equation (10), while the terms originally involving G are deleted.

Therefore, when an adjoint run is requested, and secondary sources are
present in the given circuit, the iteration given by Equation 10) is used
instead of the one given by (11).
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